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Throughout, everything is finite.
Let ' = (VT, ET) be a simple undirected graph.
Automorphism: g € Sym(VT) such that v ~ w <= v& ~ w8.
Automorphism group Aut(I"): The group of all the automorphisms.
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e [=C, (n=3) = Aut(lN) = Dy,

How can we "break” the symmetries of a graph?

e Colouring vertices (setwise)

e Fixing vertices (pointwise)
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Which automorphisms preserve the following colourings?

o Aut(l, Gi) = Aut(l, &) = Aut(l', G3) = Zs, and Aut(l', G) = 1.

Distinguishing colouring: A colouring C of I' such that Aut(l', C) = 1.

Distinguishing number D(I"): The minimal number of colours in a distin-
guishing colouring of . (e.g. D(Cs) = 3.)
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Partitions

Note. A colouring is a partition of vertices.
Let G < Sym(Q) be a transitive permutation group of degree n.
Distinguishing partition: A partition N = {m1,..., 7y} of Q such that

ﬂ Giry = 1.
i=1

Distinguishing number D(G): The minimal size of a dist. partition.
Remark. D(I') = D(Aut(l')), so D(D1g) = 3 and D(D»,) = 2 for n > 6.
Examples

e D(S,)=n; D(A;) =n—1.

0o D(G)=1 < G=1

o G #1lisregular = D(G) =2.
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Note. The following statements are equivalent.
e D(G) =2
e 3 A CQsuch that Gjay = 1.

G is called primitive if G, is maximal in G.

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997)
G # An, Sy primitive = D(G) = 2, with 43 exceptions of degree < 32. J

Dolfi, 2000: D(G) < 4 for each exception.

Theorem (H, 2023+)

Suppose T non-abelian simple, G = Hol(T) = T: Aut(T), Q=T and
3< k< |T|—3. Then

3 A C Q such that [A| = k and Ga) = 1.
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Fixing sets

Which automorphisms of I = Cg survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset A C VT such that [ ca Aut(M)a = 1.

Fixing (determining) number fix([): The minimal size of such a A.
o =K, = fix(N) =n—-1
o [=C, = fix(IN =2.
o Aut(lN =1 < fix(l) =0.
o D(IN < fix(l) + 1.
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Bases

Let G < Sym() be a transitive permutation group.
Base: A subset A C Q such that Ga) =(\,en Ga = 1.
Base size b(G): The minimal size of a base for G.
Remark. fix(I') = b(Aut(I)).

e G=5,Q={1,...,n} = b(G)=n—-1.

e G=Dy, (n=23), Q={1,...,n} = b(G)=2.

e H(G)=0 <= G=1

o D(G) < b(G) + 1.

G =GL4(q), Q=FI\ {0} = b(G)=d.
Klavzar, Wong & Zhu, 2006: D(G) =2 if F # F3, F3, F3 or 3.
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Observation: If A is a base and x,y € G, then

oF=aforallae A < xyle ﬂ Go = Gpa) <= x=y.
aEA

That is, each group element is uniquely determined by its action on A.
o |G| < QP%) so logjq |G| < b(G).

@ A small base A provides an efficient way to store the elements of G,
using |Al|-tuples rather than |Q[-tuples.

Observation: If A = {a1,...,ap)} is a base and Gk = ﬂf;l Ga, then

G > G(l) > G(2) > > G(b(G)_l) > G(b(G)) =1.

Thus, 2°(%) < |G| and so log|q) |G| < b(G) < log, |G|.
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Some general bounds

Let G be primitive with degree n.

Questions: Better bounds on b(G)? Or even determine b(G)?
Conjecture (Pyber, 1993)

There is an absolute constant ¢ such that log, |G| < b(G) < clog, |G].

Duyan, Halasi & Maréti, 2018: Pyber’s conjecture is true.
Halasi, Liebeck & Maréti, 2019: b(G) < 2log, |G| + 24.
Soluble groups:

o Seress, 1996: G soluble — b(G) < 4
e Burness, 2021: G, soluble =— b(G) <5
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Affine: G = V:H < AGL(V), where V =TF4 and H < GL(V) irreducible.
e Halasi & Podoski, 2016: b(G) < 3if (|V|,|H|) = 1.
e H/Z(H) quasisimple: partial results.
Twisted wreath: G = TK:P, P < S, transitive.
e Fawcett, 2022: b(G) = 2 if P is quasiprimitive.
Product type: G < L P in its product action, L < Sym(I') primitive.
o Bailey & Cameron, 2011: The case where G = L P.
e.g. b(L1P) =2 <= L, has at least D(P) regular orbits on I'.

o Burness & H, 2023: partial results on G < L P.
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Almost simple groups

Alternating socle A,,:

e Burness, Guralnick & Saxl, 2011: G, is primitive on [m] v/

e Morris & Spiga, 2021: G, is imprimitive on [m] v/

e G, is intransitive: partial results (Halasi, 2012)
Sporadic socle: Done v' (Burness, O’Brien & Wilson, 2010)
soc(G) is Lie type:

@ Burness, Guralnick & Saxl, 2014: G classical and G, € S v

e Burness, Liebeck & Shalev, 2007: b(G) < 6 if G is exceptional

o Burness & Thomas, 2023: b(G) = 2 if G is exceptional and G, is
the normaliser of a maximal torus v/
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Diagonal type primitive groups

Let T be a non-abelian finite simple group.
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@ G induces a subgroup P of S on the k components.
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A construction

Set o = D and suppose G = T*.(Out(T) x P). Then
Go={(a,...,a)mr:ac Aut(T),m € P} = Aut(T) x P.

Note. If kK > 32 and P # Ay, Sk then D(P) = 2, so there exists a
distinguishing partition [k] = A; U Ay U Az of distinct sizes.

Write T = (x,y) and 8 = D(t1,..., tk) € Q, where
ti=1lifieA, ti=xifie Dy, ti=yifieAs.

Suppose g = (a,...,a)m € G, N Gg. Then ™ = 1 since 7 preserves [k] =
A3 UAU A3 Thus, a € Cayy(1y(x) N Cauy(1y(y) =L and so g = 1.
Fawcett, 2013: P # Ax, Sk = b(G) = 2.

Remark. This method is not useful for P € {Ag, Sk}.
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Holomorph
Let X = Hol(T) = T:Aut(T) < Sym(T). Recall that

Theorem (H, 2023+)
If3< k< |T|-3, then 3 A C T such that [A] = k and X{a) = 1.

Assume 3 < k < |T| -3 and G = T*.(Out(T) x S).
Let A = {t1,...,tx} be such that |A| = k and X(a} = 1.
Let « = D and 8 = D(t1, ..., tk).

Note. If g = (a,...,a)T € G, N Gg, then tj= = xt? for some x € T, so
xlae X(ay- Thus, a=1and x =1, which implies 7 =1 as ty,..., tx are
distinct. Hence g = 1.

Theorem (H, 2023+)
If3< k< |T|—3and G= TK.(Out(T) x Sk), then b(G) = 2.
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Base sizes

Theorem (H, 2023+)
Suppose G < TX.(Out(T) x P) is a diagonal type primitive group of top
group P. Then b(G) = 2 iff one of the following holds:

o P ¢ {Ax Sk}

e 3< k< |T|-3;

e ke {|T|—2,|T|—1} and Sx £ G.

Theorem (H, 2023+)
Suppose G is a diagonal type primitive group. Then b(G) is known. v

v




Part 1V

Connections and related problems



Subsets with trivial stabiliser

Let G < Sym(Q) be a primitive group. Assume G ¢ {Sym(), Alt(2)}.



Subsets with trivial stabiliser

Let G < Sym(Q) be a primitive group. Assume G ¢ {Sym(), Alt(2)}.
Recall. Apart from 43 exceptions, 3 A C 2 such that Gy = 1.



Subsets with trivial stabiliser

Let G < Sym(Q) be a primitive group. Assume G ¢ {Sym(), Alt(2)}.
Recall. Apart from 43 exceptions, 3 A C 2 such that Gy = 1.
Note. If k < b(G) and |A‘ = k, then G{A} = G(A) > 1.



Subsets with trivial stabiliser

Let G < Sym(Q) be a primitive group. Assume G ¢ {Sym(), Alt(2)}.
Recall. Apart from 43 exceptions, 3 A C 2 such that Gy = 1.
Note. If k < b(G) and |A| = k, then Gay = G(a) > 1.

Define the following property:

Vb(G) < k<|Q —b(G),IACQst |Al=kand Giay =1. (%)



Subsets with trivial stabiliser

Let G < Sym(Q) be a primitive group. Assume G ¢ {Sym(), Alt(2)}.
Recall. Apart from 43 exceptions, 3 A C 2 such that Gy = 1.
Note. If k < b(G) and |A| = k, then Gay = G(a) > 1.

Define the following property:

Vb(G) < k<|Q —b(G),IACQst |Al=kand Giay =1. (%)

Problem. Classify the finite primitive groups with property (*).



Subsets with trivial stabiliser

Let G < Sym(Q) be a primitive group. Assume G ¢ {Sym(), Alt(2)}.
Recall. Apart from 43 exceptions, 3 A C 2 such that Gy = 1.
Note. If k < b(G) and |A| = k, then Gay = G(a) > 1.

Define the following property:

Vb(G) < k<|Q —b(G),IACQst |Al=kand Giay =1. (%)

Problem. Classify the finite primitive groups with property (*).

Theorem (H, 2023+)
If G is holomorph simple, then G has the property ().
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Automorphisms

Let G be a non-abelian finite group. For S C G \ {1}, let
Aut(G,S) = {g € Aut(G) : S¢ = S}
and define the property
V2<k<|G|—3,35C G\ {1} st |S|=kandAut(G,S) =1. (**)

Note. If |[S| =1 or |G| — 2, then Aut(G, S) # 1.
Problem. Classify the non-abelian finite groups G with the property (*x).

Theorem (H, 2023+)
If G is simple, then G has the property (%*).
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Asymptotic results
Let T be a non-abelian finite simple group and define
{SCT\{1}:[S]=k, Au(T,S) # 1}|

("

k

be the probability that a random k-subset of T\ {1} has non-trivial setwise
stabiliser in Aut(T).
Recall. P, (T) <1if2< k< |T|-3.

]P)k(T) = ‘

Theorem (H, 2023+)
If k > 4, then Py(T) — 0 as | T| — oc.

Theorem (H, 2023+)
If 5log |T| < k < |T|—5log|T]|, then Px(T) < 1/|T|.

An application: existence of DRR with prescribed valency. (Pablo Spiga)
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Bases and regular suborbits

Problem. Classify the finite primitive groups G with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open.
Note. b(G) <2 <= G, has a regular orbit on Q.

Let r(G) be the number of regular G,-orbits on Q.

Chen & H, 2022: General method in computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

e H, 2023+: G diagonal type v’
@ Burness & H, 2022: G almost simple, G, soluble v/

@ Burness & H, 2023: Some product type groups.



Thank youl!



