Symmetry breaking on primitive groups

Hong Yi Huang

Seminars on Groups and Graphs

4 March 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Throughout, everything is finite.

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple undirected graph.

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple undirected graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple undirected graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple undirected graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{Aut}(\Gamma) \cong S_n$$

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple undirected graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group $Aut(\Gamma)$: The group of all the automorphisms.

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{Aut}(\Gamma) \cong S_n$$

•
$$\Gamma = \mathbf{C}_n \ (n \ge 3) \implies \operatorname{Aut}(\Gamma) \cong D_{2n}$$

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple undirected graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{Aut}(\Gamma) \cong S_n$$

•
$$\Gamma = \mathbf{C}_n \ (n \ge 3) \implies \operatorname{Aut}(\Gamma) \cong D_{2n}$$

How can we "break" the symmetries of a graph?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple undirected graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{Aut}(\Gamma) \cong S_n$$

•
$$\Gamma = \mathbf{C}_n \ (n \ge 3) \implies \operatorname{Aut}(\Gamma) \cong D_{2n}$$

How can we "break" the symmetries of a graph?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Colouring vertices (setwise)
- Fixing vertices (pointwise)

Part I

Distinguishing numbers for groups and graphs

(ロ)、(型)、(E)、(E)、 E) の(()

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

(ロ)、(型)、(E)、(E)、(E)、(O)()

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

• $\operatorname{Aut}(\Gamma, C_1) \cong \operatorname{Aut}(\Gamma, C_2) \cong \operatorname{Aut}(\Gamma, C_3) \cong \mathbb{Z}_2$, and $\operatorname{Aut}(\Gamma, C_4) = 1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

• $\operatorname{Aut}(\Gamma, C_1) \cong \operatorname{Aut}(\Gamma, C_2) \cong \operatorname{Aut}(\Gamma, C_3) \cong \mathbb{Z}_2$, and $\operatorname{Aut}(\Gamma, C_4) = 1$.

Distinguishing colouring: A colouring C of Γ such that $Aut(\Gamma, C) = 1$.

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

• $\operatorname{Aut}(\Gamma, C_1) \cong \operatorname{Aut}(\Gamma, C_2) \cong \operatorname{Aut}(\Gamma, C_3) \cong \mathbb{Z}_2$, and $\operatorname{Aut}(\Gamma, C_4) = 1$.

Distinguishing colouring: A colouring C of Γ such that Aut(Γ , C) = 1. **Distinguishing number** $D(\Gamma)$: The minimal number of colours in a distinguishing colouring of Γ .

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

• $\operatorname{Aut}(\Gamma, C_1) \cong \operatorname{Aut}(\Gamma, C_2) \cong \operatorname{Aut}(\Gamma, C_3) \cong \mathbb{Z}_2$, and $\operatorname{Aut}(\Gamma, C_4) = 1$.

Distinguishing colouring: A colouring C of Γ such that Aut $(\Gamma, C) = 1$. **Distinguishing number** $D(\Gamma)$: The minimal number of colours in a distinguishing colouring of Γ . (e.g. $D(\mathbf{C}_5) = 3$.)

Note. A colouring is a partition of vertices.

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Distinguishing number D(G): The minimal size of a dist. partition.

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Distinguishing number D(G): The minimal size of a dist. partition. **Remark.** $D(\Gamma) = D(Aut(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

- ロ ト - 4 回 ト - 4 □

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Distinguishing number D(G): The minimal size of a dist. partition.

Remark. $D(\Gamma) = D(\operatorname{Aut}(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

•
$$D(S_n) = n$$

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1$$

Distinguishing number D(G): The minimal size of a dist. partition.

Remark. $D(\Gamma) = D(\operatorname{Aut}(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

•
$$D(S_n) = n; D(A_n) = n - 1.$$

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1$$

Distinguishing number D(G): The minimal size of a dist. partition.

Remark. $D(\Gamma) = D(\operatorname{Aut}(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

•
$$D(S_n) = n; D(A_n) = n - 1$$

•
$$D(G) = 1 \iff G = 1.$$

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1$$

Distinguishing number D(G): The minimal size of a dist. partition.

Remark. $D(\Gamma) = D(\operatorname{Aut}(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

•
$$D(S_n) = n; D(A_n) = n - 1.$$

•
$$D(G) = 1 \iff G = 1.$$

•
$$G \neq 1$$
 is regular $\implies D(G) = 2$.

Note. The following statements are equivalent.

•
$$D(G) = 2;$$

• $\exists \ \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

Note. The following statements are equivalent.

•
$$D(G) = 2;$$

•
$$\exists \ \Delta \subseteq \Omega$$
 such that $G_{\{\Delta\}} = 1$.

G is called **primitive** if G_{α} is maximal in *G*.

(ロ)、(型)、(E)、(E)、 E) の(()

Note. The following statements are equivalent.

• D(G) = 2;

• $\exists \ \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

G is called **primitive** if G_{α} is maximal in *G*.

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997) $G \neq A_n, S_n$ primitive $\implies D(G) = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Note. The following statements are equivalent.

• D(G) = 2;

• $\exists \ \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

G is called **primitive** if G_{α} is maximal in G.

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997) $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, with 43 exceptions of degree ≤ 32 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Note. The following statements are equivalent.

• D(G) = 2;

•
$$\exists \ \Delta \subseteq \Omega$$
 such that $G_{\{\Delta\}} = 1$.

G is called **primitive** if G_{α} is maximal in G.

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997) $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, with 43 exceptions of degree ≤ 32 .

Dolfi, 2000: $D(G) \leq 4$ for each exception.

Note. The following statements are equivalent.

• D(G) = 2;

•
$$\exists \ \Delta \subseteq \Omega$$
 such that $G_{\{\Delta\}} = 1$.

G is called **primitive** if G_{α} is maximal in G.

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997) $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, with 43 exceptions of degree ≤ 32 .

Dolfi, 2000: $D(G) \leq 4$ for each exception.

Theorem (H, 2023+)

Suppose T non-abelian simple, G = Hol(T) = T: Aut(T), $\Omega = T$ and $3 \le k \le |T| - 3$. Then

 $\exists \Delta \subseteq \Omega$ such that $|\Delta| = k$ and $G_{\{\Delta\}} = 1$.

Part II

Bases for permutation groups

(ロ)、(型)、(E)、(E)、 E) の(()

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$.

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{fix}(\Gamma) = n - 1.$$

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{fix}(\Gamma) = n - 1$$
.

•
$$\Gamma = \mathbf{C}_n \implies \operatorname{fix}(\Gamma) = 2.$$

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{fix}(\Gamma) = n - 1$$

•
$$\Gamma = \mathbf{C}_n \implies \operatorname{fix}(\Gamma) = 2.$$

•
$$\operatorname{Aut}(\Gamma) = 1 \iff \operatorname{fix}(\Gamma) = 0.$$

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{fix}(\Gamma) = n - 1$$

•
$$\Gamma = \mathbf{C}_n \implies \operatorname{fix}(\Gamma) = 2.$$

•
$$\operatorname{Aut}(\Gamma) = 1 \iff \operatorname{fix}(\Gamma) = 0.$$

• $D(\Gamma) \leq \operatorname{fix}(\Gamma) + 1$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group.

Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. Base size b(G): The minimal size of a base for G.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix(Γ) = $b(\text{Aut}(\Gamma))$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix(Γ) = $b(\text{Aut}(\Gamma))$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\} \implies b(G) = n - 1$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** $\text{fix}(\Gamma) = b(\text{Aut}(\Gamma))$.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\} \implies b(G) = n - 1$.

•
$$G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$$

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix $(\Gamma) = b(\text{Aut}(\Gamma))$. • $G = S_n, \Omega = \{1, ..., n\} \implies b(G) = n - 1$.

•
$$G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$$

• $b(G) = 0 \iff G = 1.$

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix(Γ) = $b(\text{Aut}(\Gamma))$. • $G = S_n$, $\Omega = \{1, ..., n\} \implies b(G) = n - 1$.

•
$$G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$$

•
$$b(G) = 0 \iff G = 1.$$

• $D(G) \leq b(G) + 1$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix $(\Gamma) = b(\text{Aut}(\Gamma))$. • $G = S_n, \Omega = \{1, ..., n\} \implies b(G) = n - 1$.

• $G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$

- $b(G) = 0 \iff G = 1.$
- $D(G) \leq b(G) + 1$.
- $G = \operatorname{GL}_d(q), \ \Omega = \mathbb{F}_q^d \setminus \{0\} \implies b(G) = d.$

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix(Γ) = $b(\text{Aut}(\Gamma))$.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\} \implies b(G) = n - 1$.

•
$$G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$$

•
$$b(G) = 0 \iff G = 1.$$

- $D(G) \leq b(G) + 1$.
- $G = \operatorname{GL}_d(q), \ \Omega = \mathbb{F}_q^d \setminus \{0\} \implies b(G) = d.$

Klavžar, Wong & Zhu, 2006: D(G) = 2 if $\mathbb{F}_q^d \neq \mathbb{F}_2^2$, \mathbb{F}_2^3 , \mathbb{F}_4^2 or \mathbb{F}_3^2 .

Observation: If Δ is a base and $x, y \in G$,

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for all } \alpha \in \Delta \iff \mathsf{x} \mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} = \mathsf{G}_{(\Delta)}$$

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^x = \alpha^y$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha = G_{(\Delta)} \iff x = y.$

<ロト < 団ト < 三ト < 三ト < 三 ・ つへの</p>

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^x = \alpha^y$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha = G_{(\Delta)} \iff x = y.$

That is, each group element is uniquely determined by its action on Δ .

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^x = \alpha^y$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha = G_{(\Delta)} \iff x = y.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

That is, each group element is uniquely determined by its action on Δ .

•
$$|G| \leq |\Omega|^{b(G)}$$
, so $\log_{|\Omega|} |G| \leq b(G)$.

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y}$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$

That is, each group element is uniquely determined by its action on Δ .

•
$$|G| \leq |\Omega|^{b(G)}$$
, so $\log_{|\Omega|} |G| \leq b(G)$.

 A small base Δ provides an efficient way to store the elements of G, using |Δ|-tuples rather than |Ω|-tuples.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y}$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$

That is, each group element is uniquely determined by its action on Δ .

•
$$|G| \leq |\Omega|^{b(G)}$$
, so $\log_{|\Omega|} |G| \leq b(G)$.

 A small base Δ provides an efficient way to store the elements of G, using |Δ|-tuples rather than |Ω|-tuples.

Observation: If $\Delta = \{\alpha_1, \ldots, \alpha_{b(G)}\}$ is a base and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$ then

$$G > G^{(1)} > G^{(2)} > \cdots > G^{(b(G)-1)} > G^{(b(G))} = 1.$$

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y}$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$

That is, each group element is uniquely determined by its action on Δ .

•
$$|G| \leqslant |\Omega|^{b(G)}$$
, so $\log_{|\Omega|} |G| \leqslant b(G)$.

 A small base Δ provides an efficient way to store the elements of G, using |Δ|-tuples rather than |Ω|-tuples.

Observation: If $\Delta = \{\alpha_1, \ldots, \alpha_{b(G)}\}$ is a base and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$ then

$$G > G^{(1)} > G^{(2)} > \cdots > G^{(b(G)-1)} > G^{(b(G))} = 1.$$

Thus, $2^{b(G)} \leq |G|$ and so $\log_{|\Omega|} |G| \leq b(G) \leq \log_2 |G|$.

Let G be primitive with degree n.

Questions: Better bounds on b(G)? Or even determine b(G)?

Let G be primitive with degree n.

Questions: Better bounds on b(G)? Or even determine b(G)?

Conjecture (Pyber, 1993)

There is an absolute constant c such that $\log_n |G| \leq b(G) \leq c \log_n |G|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let G be primitive with degree n.

Questions: Better bounds on b(G)? Or even determine b(G)?

Conjecture (Pyber, 1993)

There is an absolute constant c such that $\log_n |G| \leq b(G) \leq c \log_n |G|$.

Duyan, Halasi & Maróti, 2018: Pyber's conjecture is true.

Let G be primitive with degree n.

Questions: Better bounds on b(G)? Or even determine b(G)?

Conjecture (Pyber, 1993)

There is an absolute constant c such that $\log_n |G| \leq b(G) \leq c \log_n |G|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Duyan, Halasi & Maróti, 2018: Pyber's conjecture is true. **Halasi, Liebeck & Maróti, 2019:** $b(G) \leq 2 \log_n |G| + 24$.

Let G be primitive with degree n.

Questions: Better bounds on b(G)? Or even determine b(G)?

Conjecture (Pyber, 1993)

There is an absolute constant c such that $\log_n |G| \leq b(G) \leq c \log_n |G|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Duyan, Halasi & Maróti, 2018: Pyber's conjecture is true. **Halasi, Liebeck & Maróti, 2019:** $b(G) \leq 2 \log_n |G| + 24$. **Soluble groups:**

- Seress, 1996: G soluble $\implies b(G) \leq 4$
- Burness, 2021: G_{α} soluble $\implies b(G) \leq 5$

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

• Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1.
- H/Z(H) quasisimple: partial results.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1.
- H/Z(H) quasisimple: partial results.

Twisted wreath: $G = T^k : P, P \leq S_k$ transitive.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1.
- H/Z(H) quasisimple: partial results.

Twisted wreath: $G = T^k : P, P \leq S_k$ transitive.

• Fawcett, 2022: b(G) = 2 if P is quasiprimitive.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

- Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1.
- H/Z(H) quasisimple: partial results.

Twisted wreath: $G = T^k : P, P \leq S_k$ transitive.

• Fawcett, 2022: b(G) = 2 if P is quasiprimitive.

Product type: $G \leq L \wr P$ in its product action, $L \leq \text{Sym}(\Gamma)$ primitive.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

- Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1.
- H/Z(H) quasisimple: partial results.

Twisted wreath: $G = T^k : P, P \leq S_k$ transitive.

• Fawcett, 2022: b(G) = 2 if P is quasiprimitive.

Product type: $G \leq L \wr P$ in its product action, $L \leq Sym(\Gamma)$ primitive.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• **Bailey & Cameron, 2011:** The case where $G = L \wr P$.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

- Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1.
- H/Z(H) quasisimple: partial results.

Twisted wreath: $G = T^k : P, P \leq S_k$ transitive.

• Fawcett, 2022: b(G) = 2 if P is quasiprimitive.

Product type: $G \leq L \wr P$ in its product action, $L \leq Sym(\Gamma)$ primitive.

• Bailey & Cameron, 2011: The case where $G = L \wr P$.

e.g. $b(L \wr P) = 2 \iff L_{\gamma}$ has at least D(P) regular orbits on Γ .

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

- Halasi & Podoski, 2016: $b(G) \leq 3$ if (|V|, |H|) = 1.
- H/Z(H) quasisimple: partial results.

Twisted wreath: $G = T^k : P, P \leq S_k$ transitive.

• Fawcett, 2022: b(G) = 2 if P is quasiprimitive.

Product type: $G \leq L \wr P$ in its product action, $L \leq Sym(\Gamma)$ primitive.

• Bailey & Cameron, 2011: The case where $G = L \wr P$.

e.g. $b(L \wr P) = 2 \iff L_{\gamma}$ has at least D(P) regular orbits on Γ .

• Burness & H, 2023: partial results on $G < L \wr P$.

Almost simple groups

Alternating socle A_m :

• Burness, Guralnick & Saxl, 2011: G_{α} is primitive on $[m] \checkmark$

(ロ)、(型)、(E)、(E)、 E) の(()

- Alternating socle A_m:
 - Burness, Guralnick & Saxl, 2011: G_{α} is primitive on $[m] \checkmark$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Morris & Spiga, 2021: G_{α} is imprimitive on $[m] \checkmark$

- Alternating socle A_m:
 - Burness, Guralnick & Saxl, 2011: G_{α} is primitive on $[m] \checkmark$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Morris & Spiga, 2021: G_{α} is imprimitive on $[m] \checkmark$
- G_{α} is intransitive: partial results (Halasi, 2012)

- Alternating socle A_m:
 - Burness, Guralnick & Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
 - Morris & Spiga, 2021: G_{α} is imprimitive on $[m] \checkmark$
 - G_{α} is intransitive: partial results (Halasi, 2012)
- Sporadic socle: Done √ (Burness, O'Brien & Wilson, 2010)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Alternating socle A_m :
 - Burness, Guralnick & Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
 - Morris & Spiga, 2021: G_{α} is imprimitive on $[m] \checkmark$
 - G_{α} is intransitive: partial results (Halasi, 2012)
- **Sporadic socle:** Done \checkmark (Burness, O'Brien & Wilson, 2010) soc(G) is Lie type:
 - Burness, Guralnick & Saxl, 2014: *G* classical and $G_{\alpha} \in S \checkmark$

- Alternating socle A_m :
 - Burness, Guralnick & Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
 - Morris & Spiga, 2021: G_{α} is imprimitive on $[m] \checkmark$
 - G_{α} is intransitive: partial results (Halasi, 2012)
- **Sporadic socle:** Done \checkmark (Burness, O'Brien & Wilson, 2010) soc(G) is Lie type:
 - Burness, Guralnick & Saxl, 2014: *G* classical and $G_{\alpha} \in S \checkmark$
 - Burness, Liebeck & Shalev, 2007: $b(G) \leq 6$ if G is exceptional

- Alternating socle A_m :
 - Burness, Guralnick & Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
 - Morris & Spiga, 2021: G_{α} is imprimitive on $[m] \checkmark$
 - G_{α} is intransitive: partial results (Halasi, 2012)
- **Sporadic socle:** Done \checkmark (Burness, O'Brien & Wilson, 2010) soc(G) is Lie type:
 - Burness, Guralnick & Saxl, 2014: G classical and $G_{\alpha} \in S \checkmark$
 - Burness, Liebeck & Shalev, 2007: $b(G) \leq 6$ if G is exceptional
 - Burness & Thomas, 2023: b(G) = 2 if G is exceptional and G_{α} is the normaliser of a maximal torus \checkmark

Part III

Base sizes of diagonal type primitive groups

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let T be a non-abelian finite simple group.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let T be a non-abelian finite simple group.

Write $\Omega = [T^k : D]$, where $D = \{(t, \ldots, t) : t \in T\}$, so $T^k \leq Sym(\Omega)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let T be a non-abelian finite simple group.

Write $\Omega = [T^k : D]$, where $D = \{(t, \ldots, t) : t \in T\}$, so $T^k \leq Sym(\Omega)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Diagonal type group: G with $T^k \triangleleft G \leq N_{\text{Sym}(\Omega)}(T^k)$.

Let T be a non-abelian finite simple group.

Write $\Omega = [T^k : D]$, where $D = \{(t, \ldots, t) : t \in T\}$, so $T^k \leq Sym(\Omega)$.

Diagonal type group: G with $T^k \leq G \leq N_{\text{Sym}(\Omega)}(T^k)$.

Note. $N_{\text{Sym}(\Omega)}(T^k) = T^k (\text{Out}(T) \times S_k)$ is a maximal subgroup of $\text{Sym}(\Omega)$.

Let T be a non-abelian finite simple group.

Write $\Omega = [T^k : D]$, where $D = \{(t, \ldots, t) : t \in T\}$, so $T^k \leq Sym(\Omega)$.

Diagonal type group: G with $T^k \leq G \leq N_{Sym(\Omega)}(T^k)$.

Note. $N_{\text{Sym}(\Omega)}(T^k) = T^k (\text{Out}(T) \times S_k)$ is a maximal subgroup of $\text{Sym}(\Omega)$.

• G induces a subgroup P of S_k on the k components.

Let T be a non-abelian finite simple group.

Write $\Omega = [T^k : D]$, where $D = \{(t, ..., t) : t \in T\}$, so $T^k \leq \text{Sym}(\Omega)$. **Diagonal type group:** G with $T^k \leq G \leq N_{\text{Sym}(\Omega)}(T^k)$.

Note. $N_{\text{Sym}(\Omega)}(T^k) = T^k.(\text{Out}(T) \times S_k)$ is a maximal subgroup of $\text{Sym}(\Omega)$.

- G induces a subgroup P of S_k on the k components.
- G is primitive $\iff P$ is primitive, or k = 2 and P = 1.

Let T be a non-abelian finite simple group.

Write $\Omega = [T^k : D]$, where $D = \{(t, ..., t) : t \in T\}$, so $T^k \leq \text{Sym}(\Omega)$. **Diagonal type group:** G with $T^k \leq G \leq N_{\text{Sym}(\Omega)}(T^k)$.

Note. $N_{\text{Sym}(\Omega)}(T^k) = T^k.(\text{Out}(T) \times S_k)$ is a maximal subgroup of $\text{Sym}(\Omega)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- G induces a subgroup P of S_k on the k components.
- G is primitive $\iff P$ is primitive, or k = 2 and P = 1.

Thus, $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P).$

Set $\alpha = D$ and suppose $G = T^k (Out(T) \times P)$. Then

$$G_{\alpha} = \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Set $\alpha = D$ and suppose $G = T^k (Out(T) \times P)$. Then

$$G_{\alpha} = \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Set $\alpha = D$ and suppose $G = T^k (Out(T) \times P)$. Then

$$G_{\alpha} = \{(a,\ldots,a)\pi : a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \ldots, t_k) \in \Omega$, where

 $t_i = 1$ if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Set $\alpha = D$ and suppose $G = T^k (Out(T) \times P)$. Then

$$G_{\alpha} = \{(a,\ldots,a)\pi : a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \ldots, t_k) \in \Omega$, where

 $t_i = 1$ if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, \ldots, a)\pi \in G_{\alpha} \cap G_{\beta}$.

Set $\alpha = D$ and suppose $G = T^k (Out(T) \times P)$. Then

$$G_{\alpha} = \{(a,\ldots,a)\pi : a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \ldots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi = 1$ since π preserves $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$.

Set $\alpha = D$ and suppose $G = T^k (Out(T) \times P)$. Then

$$G_{\alpha} = \{(a,\ldots,a)\pi : a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \ldots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi = 1$ since π preserves $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$. Thus, $a \in C_{Aut(T)}(x) \cap C_{Aut(T)}(y) = 1$ and so g = 1.

Set $\alpha = D$ and suppose $G = T^k (Out(T) \times P)$. Then

$$G_{\alpha} = \{(a,\ldots,a)\pi : a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \ldots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi = 1$ since π preserves $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$. Thus, $a \in C_{Aut(T)}(x) \cap C_{Aut(T)}(y) = 1$ and so g = 1. Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$.

Set $\alpha = D$ and suppose $G = T^k (Out(T) \times P)$. Then

$$G_{\alpha} = \{(a,\ldots,a)\pi : a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \ldots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi = 1$ since π preserves $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$. Thus, $a \in C_{Aut(T)}(x) \cap C_{Aut(T)}(y) = 1$ and so g = 1. Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$.

Remark. This method is not useful for $P \in \{A_k, S_k\}$.

Let X = Hol(T) = T: Aut $(T) \leq Sym(T)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let $X = Hol(T) = T: Aut(T) \leq Sym(T)$. Recall that

Theorem (H, 2023+) If $3 \leq k \leq |T| - 3$, then $\exists \Delta \subseteq T$ such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $X = Hol(T) = T: Aut(T) \leq Sym(T)$. Recall that

Theorem (H, 2023+) If $3 \leq k \leq |T| - 3$, then $\exists \Delta \subseteq T$ such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Assume $3 \leq k \leq |T| - 3$ and $G = T^k (Out(T) \times S_k)$.

Let $X = Hol(T) = T: Aut(T) \leq Sym(T)$. Recall that

Theorem (H, 2023+)

If $3 \leq k \leq |\mathcal{T}| - 3$, then $\exists \Delta \subseteq \mathcal{T}$ such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Assume $3 \leq k \leq |T| - 3$ and $G = T^k (Out(T) \times S_k)$.

Let $\Delta = \{t_1, \ldots, t_k\}$ be such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Let X = Hol(T) = T: Aut $(T) \leq Sym(T)$. Recall that

Theorem (H, 2023+)

If $3 \leq k \leq |\mathcal{T}| - 3$, then $\exists \Delta \subseteq \mathcal{T}$ such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume
$$3 \leq k \leq |T| - 3$$
 and $G = T^k . (\operatorname{Out}(T) \times S_k)$.

Let $\Delta = \{t_1, \ldots, t_k\}$ be such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Let $\alpha = D$ and $\beta = D(t_1, \ldots, t_k)$.

Let X = Hol(T) = T: Aut $(T) \leq Sym(T)$. Recall that

Theorem (H, 2023+)

If $3 \leqslant k \leqslant |\mathcal{T}| - 3$, then $\exists \Delta \subseteq \mathcal{T}$ such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Assume
$$3 \leq k \leq |T| - 3$$
 and $G = T^k (\operatorname{Out}(T) \times S_k)$.

Let $\Delta = \{t_1, \dots, t_k\}$ be such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Let
$$\alpha = D$$
 and $\beta = D(t_1, \ldots, t_k)$.

Note. If $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$, then $t_{i^{\pi}} = xt_i^a$ for some $x \in T$, so $x^{-1}a \in X_{\{\Delta\}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let X = Hol(T) = T: Aut $(T) \leq Sym(T)$. Recall that

Theorem (H, 2023+)

If $3 \leq k \leq |\mathcal{T}| - 3$, then $\exists \Delta \subseteq \mathcal{T}$ such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Assume
$$3 \leq k \leq |\mathcal{T}| - 3$$
 and $G = \mathcal{T}^k.(\operatorname{Out}(\mathcal{T}) \times S_k)$.

Let $\Delta = \{t_1, \ldots, t_k\}$ be such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Let
$$\alpha = D$$
 and $\beta = D(t_1, \ldots, t_k)$.

Note. If $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$, then $t_{i^{\pi}} = xt_{i}^{a}$ for some $x \in T$, so $x^{-1}a \in X_{\{\Delta\}}$. Thus, a = 1 and x = 1, which implies $\pi = 1$ as $t_{1}, ..., t_{k}$ are distinct. Hence g = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let $X = Hol(T) = T: Aut(T) \leq Sym(T)$. Recall that

Theorem (H, 2023+)

If $3 \leqslant k \leqslant |\mathcal{T}| - 3$, then $\exists \Delta \subseteq \mathcal{T}$ such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Assume
$$3 \leq k \leq |T| - 3$$
 and $G = T^k . (\operatorname{Out}(T) \times S_k)$.

Let $\Delta = \{t_1, \ldots, t_k\}$ be such that $|\Delta| = k$ and $X_{\{\Delta\}} = 1$.

Let
$$\alpha = D$$
 and $\beta = D(t_1, \ldots, t_k)$.

Note. If $g = (a, \ldots, a)\pi \in G_{\alpha} \cap G_{\beta}$, then $t_{i^{\pi}} = xt_i^a$ for some $x \in T$, so $x^{-1}a \in X_{\{\Delta\}}$. Thus, a = 1 and x = 1, which implies $\pi = 1$ as t_1, \ldots, t_k are distinct. Hence g = 1.

Theorem (H, 2023+) If $3 \leq k \leq |T| - 3$ and $G = T^k.(\operatorname{Out}(T) \times S_k)$, then b(G) = 2.

Base sizes

Theorem (H, 2023+)

Suppose $G \leq T^k.(Out(T) \times P)$ is a diagonal type primitive group of top group P. Then b(G) = 2 iff one of the following holds:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $P \notin \{A_k, S_k\};$
- $3 \leq k \leq |T| 3;$
- $k \in \{|T| 2, |T| 1\}$ and $S_k \notin G$.

Base sizes

Theorem (H, 2023+)

Suppose $G \leq T^k.(Out(T) \times P)$ is a diagonal type primitive group of top group P. Then b(G) = 2 iff one of the following holds:

•
$$P \notin \{A_k, S_k\};$$

•
$$3 \leq k \leq |T| - 3;$$

•
$$k \in \{|T| - 2, |T| - 1\}$$
 and $S_k \notin G$.

Theorem (H, 2023+)

Suppose G is a diagonal type primitive group. Then b(G) is known. \checkmark

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Part IV

Connections and related problems

Subsets with trivial stabiliser

Let $G \leq \text{Sym}(\Omega)$ be a primitive group. Assume $G \notin \{\text{Sym}(\Omega), \text{Alt}(\Omega)\}$.

Subsets with trivial stabiliser

Let $G \leq \text{Sym}(\Omega)$ be a primitive group. Assume $G \notin \{\text{Sym}(\Omega), \text{Alt}(\Omega)\}$. **Recall.** Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Subsets with trivial stabiliser

Let $G \leq \text{Sym}(\Omega)$ be a primitive group. Assume $G \notin \{\text{Sym}(\Omega), \text{Alt}(\Omega)\}$. **Recall.** Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$. **Note.** If k < b(G) and $|\Delta| = k$, then $G_{\{\Delta\}} \ge G_{(\Delta)} > 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Subsets with trivial stabiliser

Let $G \leq \text{Sym}(\Omega)$ be a primitive group. Assume $G \notin \{\text{Sym}(\Omega), \text{Alt}(\Omega)\}$. **Recall.** Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$. **Note.** If k < b(G) and $|\Delta| = k$, then $G_{\{\Delta\}} \ge G_{(\Delta)} > 1$. Define the following property:

 $\forall \ b(G) \leqslant k \leqslant |\Omega| - b(G), \ \exists \ \Delta \subseteq \Omega \text{ s.t. } |\Delta| = k \text{ and } G_{\{\Delta\}} = 1. \quad (\star)$

Subsets with trivial stabiliser

Let $G \leq \text{Sym}(\Omega)$ be a primitive group. Assume $G \notin \{\text{Sym}(\Omega), \text{Alt}(\Omega)\}$. **Recall.** Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$. **Note.** If k < b(G) and $|\Delta| = k$, then $G_{\{\Delta\}} \ge G_{(\Delta)} > 1$. Define the following property:

 $\forall \ b(G) \leqslant k \leqslant |\Omega| - b(G), \ \exists \ \Delta \subseteq \Omega \text{ s.t. } |\Delta| = k \text{ and } G_{\{\Delta\}} = 1. \quad (\star)$

Problem. Classify the finite primitive groups with property (*).

Subsets with trivial stabiliser

Let $G \leq \text{Sym}(\Omega)$ be a primitive group. Assume $G \notin \{\text{Sym}(\Omega), \text{Alt}(\Omega)\}$. **Recall.** Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$. **Note.** If k < b(G) and $|\Delta| = k$, then $G_{\{\Delta\}} \ge G_{(\Delta)} > 1$. Define the following property:

 $\forall \ b(G)\leqslant k\leqslant |\Omega|-b(G), \ \exists \ \Delta\subseteq \Omega \ \text{s.t.} \ |\Delta|=k \ \text{and} \ G_{\{\Delta\}}=1. \quad (\star)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem. Classify the finite primitive groups with property (*).

Theorem (H, 2023+)

If G is **holomorph simple**, then G has the property (\star) .

Let G be a non-abelian finite group. For $S \subseteq G \setminus \{1\}$, let

$$\operatorname{Aut}(G,S) = \{g \in \operatorname{Aut}(G) : S^g = S\}$$

(ロ)、(型)、(E)、(E)、 E) の(()

Let G be a non-abelian finite group. For $S\subseteq G\setminus\{1\}$, let

$$\operatorname{Aut}(G,S) = \{g \in \operatorname{Aut}(G) : S^g = S\}$$

and define the property

 $\forall \ 2 \leqslant k \leqslant |G| - 3, \ \exists \ S \subseteq G \setminus \{1\} \text{ s.t. } |S| = k \text{ and } \operatorname{Aut}(G, S) = 1. (\star\star)$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Let G be a non-abelian finite group. For $S \subseteq G \setminus \{1\}$, let

$$\operatorname{Aut}(G,S) = \{g \in \operatorname{Aut}(G) : S^g = S\}$$

and define the property

 $\forall 2 \leq k \leq |G| - 3, \exists S \subseteq G \setminus \{1\} \text{ s.t. } |S| = k \text{ and } \operatorname{Aut}(G, S) = 1. (**)$ Note. If |S| = 1 or |G| - 2, then $\operatorname{Aut}(G, S) \neq 1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let G be a non-abelian finite group. For $S \subseteq G \setminus \{1\}$, let

$$\operatorname{Aut}(G,S) = \{g \in \operatorname{Aut}(G) : S^g = S\}$$

and define the property

 $\forall \ 2 \leqslant k \leqslant |G| - 3, \ \exists \ S \subseteq G \setminus \{1\} \text{ s.t. } |S| = k \text{ and } \operatorname{Aut}(G, S) = 1. (\star\star)$

Note. If |S| = 1 or |G| - 2, then Aut $(G, S) \neq 1$.

Problem. Classify the non-abelian finite groups G with the property $(\star\star)$.

Let G be a non-abelian finite group. For $S \subseteq G \setminus \{1\}$, let

$$\operatorname{Aut}(G,S) = \{g \in \operatorname{Aut}(G) : S^g = S\}$$

and define the property

 $\forall \ 2 \leqslant k \leqslant |G| - 3, \ \exists \ S \subseteq G \setminus \{1\} \ \text{s.t.} \ |S| = k \ \text{and} \ \mathsf{Aut}(G, S) = 1. \ (\star\star)$

Note. If |S| = 1 or |G| - 2, then Aut $(G, S) \neq 1$.

Problem. Classify the non-abelian finite groups G with the property $(\star\star)$.

A D N A 目 N A E N A E N A B N A C N

Theorem (H, 2023+)

If G is simple, then G has the property $(\star\star)$.

Let T be a non-abelian finite simple group and define

$$\mathbb{P}_k(T) := \frac{|\{S \subseteq T \setminus \{1\} : |S| = k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}$$

be the probability that a random k-subset of $T \setminus \{1\}$ has non-trivial setwise stabiliser in Aut(T).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let T be a non-abelian finite simple group and define

$$\mathbb{P}_k(T) := \frac{|\{S \subseteq T \setminus \{1\} : |S| = k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}$$

be the probability that a random k-subset of $T \setminus \{1\}$ has non-trivial setwise stabiliser in Aut(T).

Recall. $\mathbb{P}_k(T) < 1$ if $2 \leq k \leq |T| - 3$.

Let T be a non-abelian finite simple group and define

$$\mathbb{P}_k(T) := \frac{|\{S \subseteq T \setminus \{1\} : |S| = k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}$$

be the probability that a random k-subset of $T \setminus \{1\}$ has non-trivial setwise stabiliser in Aut(T).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

```
Recall. \mathbb{P}_k(T) < 1 if 2 \leq k \leq |T| - 3.
```

```
Theorem (H, 2023+)
If k \ge 4, then \mathbb{P}_k(T) \to 0 as |T| \to \infty.
```

Let T be a non-abelian finite simple group and define

$$\mathbb{P}_k(T) := \frac{|\{S \subseteq T \setminus \{1\} : |S| = k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}$$

be the probability that a random k-subset of $T \setminus \{1\}$ has non-trivial setwise stabiliser in Aut(T).

```
Recall. \mathbb{P}_k(T) < 1 if 2 \leq k \leq |T| - 3.
```

```
Theorem (H, 2023+)
```

```
If k \ge 4, then \mathbb{P}_k(T) \to 0 as |T| \to \infty.
```

Theorem (H, 2023+) If $5 \log |T| < k < |T| - 5 \log |T|$, then $\mathbb{P}_k(T) < 1/|T|$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let T be a non-abelian finite simple group and define

$$\mathbb{P}_k(T) := \frac{|\{S \subseteq T \setminus \{1\} : |S| = k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}$$

be the probability that a random k-subset of $T \setminus \{1\}$ has non-trivial setwise stabiliser in Aut(T).

```
Recall. \mathbb{P}_k(T) < 1 if 2 \leq k \leq |T| - 3.
```

```
Theorem (H, 2023+)
```

```
If k \ge 4, then \mathbb{P}_k(T) \to 0 as |T| \to \infty.
```

```
Theorem (H, 2023+)
```

```
If 5 \log |T| < k < |T| - 5 \log |T|, then \mathbb{P}_k(T) < 1/|T|.
```

An application: existence of DRR with prescribed valency. (Pablo Spiga)

Problem. Classify the finite primitive groups *G* with b(G) = 2.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Problem. Classify the finite primitive groups G with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem. Classify the finite primitive groups *G* with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open. **Note.** $b(G) \leq 2 \iff G_{\alpha}$ has a regular orbit on Ω .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem. Classify the finite primitive groups G with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Note. $b(G) \leq 2 \iff G_{\alpha}$ has a regular orbit on Ω .

Let r(G) be the number of regular G_{α} -orbits on Ω .

Problem. Classify the finite primitive groups G with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Note. $b(G) \leq 2 \iff G_{\alpha}$ has a regular orbit on Ω .

Let r(G) be the number of regular G_{α} -orbits on Ω .

Chen & H, 2022: General method in computing r(G).

Problem. Classify the finite primitive groups G with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open.

Note. $b(G) \leq 2 \iff G_{\alpha}$ has a regular orbit on Ω .

Let r(G) be the number of regular G_{α} -orbits on Ω .

Chen & H, 2022: General method in computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Problem. Classify the finite primitive groups G with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open.

Note. $b(G) \leq 2 \iff G_{\alpha}$ has a regular orbit on Ω .

Let r(G) be the number of regular G_{α} -orbits on Ω .

Chen & H, 2022: General method in computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• H, 2023+: G diagonal type √

Problem. Classify the finite primitive groups G with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open.

Note. $b(G) \leq 2 \iff G_{\alpha}$ has a regular orbit on Ω .

Let r(G) be the number of regular G_{α} -orbits on Ω .

Chen & H, 2022: General method in computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

■ H, 2023+: G diagonal type ✓

• Burness & H, 2022: G almost simple, G_{α} soluble \checkmark

Problem. Classify the finite primitive groups G with b(G) = 2.

Remark. Other than diagonal type groups, this still remains very open.

Note. $b(G) \leq 2 \iff G_{\alpha}$ has a regular orbit on Ω .

Let r(G) be the number of regular G_{α} -orbits on Ω .

Chen & H, 2022: General method in computing r(G).

Problem. Classify the finite primitive groups G with r(G) = 1.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

■ H, 2023+: G diagonal type ✓

• Burness & H, 2022: G almost simple, G_{α} soluble \checkmark

• Burness & H, 2023: Some product type groups.

Thank you!