Symmetry breaking on primitive groups

Hong Yi Huang

Seminars on Groups and Graphs

4 March 2023
整 24 University of

Automorphisms

Throughout, everything is finite.

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple undirected graph.

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple undirected graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple undirected graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut (Γ) : The group of all the automorphisms.

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple undirected graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut (Γ) : The group of all the automorphisms.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{Aut}(\Gamma) \cong S_{n}$

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple undirected graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut (Γ) : The group of all the automorphisms.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{Aut}(\Gamma) \cong S_{n}$
- $\Gamma=\mathbf{C}_{n}(n \geqslant 3) \Longrightarrow \operatorname{Aut}(\Gamma) \cong D_{2 n}$

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple undirected graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut (Γ) : The group of all the automorphisms.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{Aut}(\Gamma) \cong S_{n}$
- $\Gamma=\mathbf{C}_{n}(n \geqslant 3) \Longrightarrow \operatorname{Aut}(\Gamma) \cong D_{2 n}$

How can we "break" the symmetries of a graph?

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple undirected graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut($\Gamma)$: The group of all the automorphisms.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{Aut}(\Gamma) \cong S_{n}$
- $\Gamma=\mathbf{C}_{n}(n \geqslant 3) \Longrightarrow \operatorname{Aut}(\Gamma) \cong D_{2 n}$

How can we "break" the symmetries of a graph?

- Colouring vertices (setwise)
- Fixing vertices (pointwise)

Part I

Distinguishing numbers for groups and graphs

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

- $\operatorname{Aut}\left(\Gamma, C_{1}\right) \cong \operatorname{Aut}\left(\Gamma, C_{2}\right) \cong \operatorname{Aut}\left(\Gamma, C_{3}\right) \cong \mathbb{Z}_{2}$, and $\operatorname{Aut}\left(\Gamma, C_{4}\right)=1$.

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

- $\operatorname{Aut}\left(\Gamma, C_{1}\right) \cong \operatorname{Aut}\left(\Gamma, C_{2}\right) \cong \operatorname{Aut}\left(\Gamma, C_{3}\right) \cong \mathbb{Z}_{2}$, and $\operatorname{Aut}\left(\Gamma, C_{4}\right)=1$.

Distinguishing colouring: A colouring C of Γ such that $\operatorname{Aut}(\Gamma, C)=1$.

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

- $\operatorname{Aut}\left(\Gamma, C_{1}\right) \cong \operatorname{Aut}\left(\Gamma, C_{2}\right) \cong \operatorname{Aut}\left(\Gamma, C_{3}\right) \cong \mathbb{Z}_{2}$, and $\operatorname{Aut}\left(\Gamma, C_{4}\right)=1$.

Distinguishing colouring: A colouring C of Γ such that $\operatorname{Aut}(\Gamma, C)=1$.
Distinguishing number $D(\Gamma)$: The minimal number of colours in a distinguishing colouring of Γ.

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

- $\operatorname{Aut}\left(\Gamma, C_{1}\right) \cong \operatorname{Aut}\left(\Gamma, C_{2}\right) \cong \operatorname{Aut}\left(\Gamma, C_{3}\right) \cong \mathbb{Z}_{2}$, and $\operatorname{Aut}\left(\Gamma, C_{4}\right)=1$.

Distinguishing colouring: A colouring C of Γ such that $\operatorname{Aut}(\Gamma, C)=1$.
Distinguishing number $D(\Gamma)$: The minimal number of colours in a distinguishing colouring of Γ. (e.g. $D\left(\mathbf{C}_{5}\right)=3$.)

Partitions

Note. A colouring is a partition of vertices.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Examples

- $D\left(S_{n}\right)=n$

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Examples

- $D\left(S_{n}\right)=n ; D\left(A_{n}\right)=n-1$.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Examples

- $D\left(S_{n}\right)=n ; D\left(A_{n}\right)=n-1$.
- $D(G)=1 \Longleftrightarrow G=1$.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Examples

- $D\left(S_{n}\right)=n ; D\left(A_{n}\right)=n-1$.
- $D(G)=1 \Longleftrightarrow G=1$.
- $G \neq 1$ is regular $\Longrightarrow D(G)=2$.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.
Theorem (Cameron, Neumann \& Saxl, 1984; Seress, 1997)
$G \neq A_{n}, S_{n}$ primitive $\Longrightarrow D(G)=2$

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.
Theorem (Cameron, Neumann \& Saxl, 1984; Seress, 1997)
$G \neq A_{n}, S_{n}$ primitive $\Longrightarrow D(G)=2$, with 43 exceptions of degree $\leqslant 32$.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.
Theorem (Cameron, Neumann \& Saxl, 1984; Seress, 1997)
$G \neq A_{n}, S_{n}$ primitive $\Longrightarrow D(G)=2$, with 43 exceptions of degree $\leqslant 32$.

Dolfi, 2000: $D(G) \leqslant 4$ for each exception.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.
Theorem (Cameron, Neumann \& Saxl, 1984; Seress, 1997)
$G \neq A_{n}, S_{n}$ primitive $\Longrightarrow D(G)=2$, with 43 exceptions of degree $\leqslant 32$.

Dolfi, 2000: $D(G) \leqslant 4$ for each exception.
Theorem (H, 2023+)
Suppose T non-abelian simple, $G=\operatorname{Hol}(T)=T$: $\operatorname{Aut}(T), \Omega=T$ and $3 \leqslant k \leqslant|T|-3$. Then
$\exists \Delta \subseteq \Omega$ such that $|\Delta|=k$ and $G_{\{\Delta\}}=1$.

Part II

Bases for permutation groups

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=n-1$.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=n-1$.
- $\Gamma=\mathbf{C}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=2$.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=n-1$.
- $\Gamma=\mathbf{C}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=2$.
- $\operatorname{Aut}(\Gamma)=1 \Longleftrightarrow \operatorname{fix}(\Gamma)=0$.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=n-1$.
- $\Gamma=\mathbf{C}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=2$.
- $\operatorname{Aut}(\Gamma)=1 \Longleftrightarrow \operatorname{fix}(\Gamma)=0$.
- $D(\Gamma) \leqslant \operatorname{fix}(\Gamma)+1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. fix $(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. $\operatorname{fix}(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. fix $(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. fix $(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.
- $b(G)=0 \Longleftrightarrow G=1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. $\mathrm{fix}(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.
- $b(G)=0 \Longleftrightarrow G=1$.
- $D(G) \leqslant b(G)+1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. $\mathrm{fix}(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.
- $b(G)=0 \Longleftrightarrow G=1$.
- $D(G) \leqslant b(G)+1$.
- $G=G L_{d}(q), \Omega=\mathbb{F}_{q}^{d} \backslash\{0\} \Longrightarrow b(G)=d$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. $\mathrm{fix}(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.
- $b(G)=0 \Longleftrightarrow G=1$.
- $D(G) \leqslant b(G)+1$.
- $G=G L_{d}(q), \Omega=\mathbb{F}_{q}^{d} \backslash\{0\} \Longrightarrow b(G)=d$.

Klavžar, Wong \& Zhu, 2006: $D(G)=2$ if $\mathbb{F}_{q}^{d} \neq \mathbb{F}_{2}^{2}, \mathbb{F}_{2}^{3}, \mathbb{F}_{4}^{2}$ or \mathbb{F}_{3}^{2}.

Base sizes

Observation: If Δ is a base and $x, y \in G$,

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)}
$$

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y .
$$

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

- $|G| \leqslant|\Omega|^{b(G)}$, so $\log _{|\Omega|}|G| \leqslant b(G)$.

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

- $|G| \leqslant|\Omega|^{b(G)}$, so $\log _{|\Omega|}|G| \leqslant b(G)$.
- A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$-tuples rather than $|\Omega|$-tuples.

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

- $|G| \leqslant|\Omega|^{b(G)}$, so $\log _{|\Omega|}|G| \leqslant b(G)$.
- A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$-tuples rather than $|\Omega|$-tuples.

Observation: If $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{b(G)}\right\}$ is a base and $G^{(k)}=\bigcap_{i=1}^{k} G_{\alpha_{i}}$ then

$$
G>G^{(1)}>G^{(2)}>\cdots>G^{(b(G)-1)}>G^{(b(G))}=1 .
$$

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

- $|G| \leqslant|\Omega|^{b(G)}$, so $\log _{|\Omega|}|G| \leqslant b(G)$.
- A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$-tuples rather than $|\Omega|$-tuples.

Observation: If $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{b(G)}\right\}$ is a base and $G^{(k)}=\bigcap_{i=1}^{k} G_{\alpha_{i}}$ then

$$
G>G^{(1)}>G^{(2)}>\cdots>G^{(b(G)-1)}>G^{(b(G))}=1 .
$$

Thus, $2^{b(G)} \leqslant|G|$ and so $\log _{|\Omega|}|G| \leqslant b(G) \leqslant \log _{2}|G|$.

Some general bounds

Let G be primitive with degree n.
Questions: Better bounds on $b(G)$? Or even determine $b(G)$?

Some general bounds

Let G be primitive with degree n.
Questions: Better bounds on $b(G)$? Or even determine $b(G)$?
Conjecture (Pyber, 1993)
There is an absolute constant c such that $\log _{n}|G| \leqslant b(G) \leqslant c \log _{n}|G|$.

Some general bounds

Let G be primitive with degree n.
Questions: Better bounds on $b(G)$? Or even determine $b(G)$?
Conjecture (Pyber, 1993)
There is an absolute constant c such that $\log _{n}|G| \leqslant b(G) \leqslant c \log _{n}|G|$.

Duyan, Halasi \& Maróti, 2018: Pyber's conjecture is true.

Some general bounds

Let G be primitive with degree n.
Questions: Better bounds on $b(G)$? Or even determine $b(G)$?
Conjecture (Pyber, 1993)
There is an absolute constant c such that $\log _{n}|G| \leqslant b(G) \leqslant c \log _{n}|G|$.

Duyan, Halasi \& Maróti, 2018: Pyber's conjecture is true. Halasi, Liebeck \& Maróti, 2019: $b(G) \leqslant 2 \log _{n}|G|+24$.

Some general bounds

Let G be primitive with degree n.
Questions: Better bounds on $b(G)$? Or even determine $b(G)$?
Conjecture (Pyber, 1993)
There is an absolute constant c such that $\log _{n}|G| \leqslant b(G) \leqslant c \log _{n}|G|$.

Duyan, Halasi \& Maróti, 2018: Pyber's conjecture is true. Halasi, Liebeck \& Maróti, 2019: $b(G) \leqslant 2 \log _{n}|G|+24$.

Soluble groups:

- Seress, 1996: G soluble $\Longrightarrow b(G) \leqslant 4$
- Burness, 2021: G_{α} soluble $\Longrightarrow b(G) \leqslant 5$

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ irreducible.

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ irreducible.

- Halasi \& Podoski, 2016: $b(G) \leqslant 3$ if $(|V|,|H|)=1$.

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ irreducible.

- Halasi \& Podoski, 2016: $b(G) \leqslant 3$ if $(|V|,|H|)=1$.
- $H / Z(H)$ quasisimple: partial results.

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant \operatorname{GL}(V)$ irreducible.

- Halasi \& Podoski, 2016: $b(G) \leqslant 3$ if $(|V|,|H|)=1$.
- $H / Z(H)$ quasisimple: partial results.

Twisted wreath: $G=T^{k}: P, P \leqslant S_{k}$ transitive.

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ irreducible.

- Halasi \& Podoski, 2016: $b(G) \leqslant 3$ if $(|V|,|H|)=1$.
- $H / Z(H)$ quasisimple: partial results.

Twisted wreath: $G=T^{k}: P, P \leqslant S_{k}$ transitive.

- Fawcett, 2022: $b(G)=2$ if P is quasiprimitive.

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ irreducible.

- Halasi \& Podoski, 2016: $b(G) \leqslant 3$ if $(|V|,|H|)=1$.
- $H / Z(H)$ quasisimple: partial results.

Twisted wreath: $G=T^{k}: P, P \leqslant S_{k}$ transitive.

- Fawcett, 2022: $b(G)=2$ if P is quasiprimitive.

Product type: $G \leqslant L \imath P$ in its product action, $L \leqslant \operatorname{Sym}(\Gamma)$ primitive.

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ irreducible.

- Halasi \& Podoski, 2016: $b(G) \leqslant 3$ if $(|V|,|H|)=1$.
- $H / Z(H)$ quasisimple: partial results.

Twisted wreath: $G=T^{k}: P, P \leqslant S_{k}$ transitive.

- Fawcett, 2022: $b(G)=2$ if P is quasiprimitive.

Product type: $G \leqslant L \imath P$ in its product action, $L \leqslant \operatorname{Sym}(\Gamma)$ primitive.

- Bailey \& Cameron, 2011: The case where $G=L \imath P$.

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ irreducible.

- Halasi \& Podoski, 2016: $b(G) \leqslant 3$ if $(|V|,|H|)=1$.
- $H / Z(H)$ quasisimple: partial results.

Twisted wreath: $G=T^{k}: P, P \leqslant S_{k}$ transitive.

- Fawcett, 2022: $b(G)=2$ if P is quasiprimitive.

Product type: $G \leqslant L \imath P$ in its product action, $L \leqslant \operatorname{Sym}(\Gamma)$ primitive.

- Bailey \& Cameron, 2011: The case where $G=L\} P$. e.g. $b(L$ l $P)=2 \Longleftrightarrow L_{\gamma}$ has at least $D(P)$ regular orbits on Γ.

O'Nan-Scott families

Affine: $G=V: H \leqslant \operatorname{AGL}(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ irreducible.

- Halasi \& Podoski, 2016: $b(G) \leqslant 3$ if $(|V|,|H|)=1$.
- $H / Z(H)$ quasisimple: partial results.

Twisted wreath: $G=T^{k}: P, P \leqslant S_{k}$ transitive.

- Fawcett, 2022: $b(G)=2$ if P is quasiprimitive.

Product type: $G \leqslant L \imath P$ in its product action, $L \leqslant \operatorname{Sym}(\Gamma)$ primitive.

- Bailey \& Cameron, 2011: The case where $G=L \imath P$.
e.g. $b(L$ l $P)=2 \Longleftrightarrow L_{\gamma}$ has at least $D(P)$ regular orbits on Γ.
- Burness \& H, 2023: partial results on $G<L\} P$.

Almost simple groups

Alternating socle A_{m} :

- Burness, Guralnick \& Saxl, 2011: G_{α} is primitive on $[m$] \checkmark

Almost simple groups

Alternating socle A_{m} :

- Burness, Guralnick \& Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
- Morris \& Spiga, 2021: G_{α} is imprimitive on $[m] \checkmark$

Almost simple groups

Alternating socle A_{m} :

- Burness, Guralnick \& Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
- Morris \& Spiga, 2021: G_{α} is imprimitive on [m] \checkmark
- G_{α} is intransitive: partial results (Halasi, 2012)

Almost simple groups

Alternating socle A_{m} :

- Burness, Guralnick \& Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
- Morris \& Spiga, 2021: G_{α} is imprimitive on [m] \checkmark
- G_{α} is intransitive: partial results (Halasi, 2012)

Sporadic socle: Done \checkmark (Burness, O'Brien \& Wilson, 2010)

Almost simple groups

Alternating socle A_{m} :

- Burness, Guralnick \& Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
- Morris \& Spiga, 2021: G_{α} is imprimitive on [m] \checkmark
- G_{α} is intransitive: partial results (Halasi, 2012)

Sporadic socle: Done \checkmark (Burness, O'Brien \& Wilson, 2010) $\operatorname{soc}(G)$ is Lie type:

- Burness, Guralnick \& Saxl, 2014: G classical and $G_{\alpha} \in \mathcal{S} \checkmark$

Almost simple groups

Alternating socle A_{m} :

- Burness, Guralnick \& Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
- Morris \& Spiga, 2021: G_{α} is imprimitive on [m] \checkmark
- G_{α} is intransitive: partial results (Halasi, 2012)

Sporadic socle: Done \checkmark (Burness, O'Brien \& Wilson, 2010) $\operatorname{soc}(G)$ is Lie type:

- Burness, Guralnick \& Saxl, 2014: G classical and $G_{\alpha} \in \mathcal{S} \checkmark$
- Burness, Liebeck \& Shalev, 2007: $b(G) \leqslant 6$ if G is exceptional

Almost simple groups

Alternating socle A_{m} :

- Burness, Guralnick \& Saxl, 2011: G_{α} is primitive on $[m] \checkmark$
- Morris \& Spiga, 2021: G_{α} is imprimitive on [m] \checkmark
- G_{α} is intransitive: partial results (Halasi, 2012)

Sporadic socle: Done \checkmark (Burness, O'Brien \& Wilson, 2010) $\operatorname{soc}(G)$ is Lie type:

- Burness, Guralnick \& Saxl, 2014: G classical and $G_{\alpha} \in \mathcal{S} \checkmark$
- Burness, Liebeck \& Shalev, 2007: $b(G) \leqslant 6$ if G is exceptional
- Burness \& Thomas, 2023: $b(G)=2$ if G is exceptional and G_{α} is the normaliser of a maximal torus \checkmark

Part III

Base sizes of diagonal type primitive groups

Diagonal type primitive groups

Let T be a non-abelian finite simple group.

Diagonal type primitive groups

Let T be a non-abelian finite simple group.
Write $\Omega=\left[T^{k}: D\right]$, where $D=\{(t, \ldots, t): t \in T\}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$.

Diagonal type primitive groups

Let T be a non-abelian finite simple group.
Write $\Omega=\left[T^{k}: D\right]$, where $D=\{(t, \ldots, t): t \in T\}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$.
Diagonal type group: G with $T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)$.

Diagonal type primitive groups

Let T be a non-abelian finite simple group.
Write $\Omega=\left[T^{k}: D\right]$, where $D=\{(t, \ldots, t): t \in T\}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$.
Diagonal type group: G with $T^{k} \leqslant G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)$.
Note. $N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$ is a maximal subgroup of $\operatorname{Sym}(\Omega)$.

Diagonal type primitive groups

Let T be a non-abelian finite simple group.
Write $\Omega=\left[T^{k}: D\right]$, where $D=\{(t, \ldots, t): t \in T\}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$.
Diagonal type group: G with $T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)$.
Note. $N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$ is a maximal subgroup of $\operatorname{Sym}(\Omega)$.

- G induces a subgroup P of S_{k} on the k components.

Diagonal type primitive groups

Let T be a non-abelian finite simple group.
Write $\Omega=\left[T^{k}: D\right]$, where $D=\{(t, \ldots, t): t \in T\}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$.
Diagonal type group: G with $T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)$.
Note. $N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$ is a maximal subgroup of $\operatorname{Sym}(\Omega)$.

- G induces a subgroup P of S_{k} on the k components.
- G is primitive $\Longleftrightarrow P$ is primitive, or $k=2$ and $P=1$.

Diagonal type primitive groups

Let T be a non-abelian finite simple group.
Write $\Omega=\left[T^{k}: D\right]$, where $D=\{(t, \ldots, t): t \in T\}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$.
Diagonal type group: G with $T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)$.
Note. $N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right)=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$ is a maximal subgroup of $\operatorname{Sym}(\Omega)$.

- G induces a subgroup P of S_{k} on the k components.
- G is primitive $\Longleftrightarrow P$ is primitive, or $k=2$ and $P=1$.

Thus, $T^{k} \preccurlyeq G \leqslant T^{k} .(\operatorname{Out}(T) \times P)$.

A construction

Set $\alpha=D$ and suppose $G=T^{k} .(\operatorname{Out}(T) \times P)$. Then

$$
G_{\alpha}=\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P
$$

A construction

Set $\alpha=D$ and suppose $G=T^{k}$. $(\operatorname{Out}(T) \times P)$. Then

$$
G_{\alpha}=\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P .
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.

A construction

Set $\alpha=D$ and suppose $G=T^{k} .(\operatorname{Out}(T) \times P)$. Then

$$
G_{\alpha}=\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, \quad t_{i}=x \text { if } i \in \Delta_{2}, \quad t_{i}=y \text { if } i \in \Delta_{3}
$$

A construction

Set $\alpha=D$ and suppose $G=T^{k} .(\operatorname{Out}(T) \times P)$. Then

$$
G_{\alpha}=\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, \quad t_{i}=x \text { if } i \in \Delta_{2}, \quad t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$.

A construction

Set $\alpha=D$ and suppose $G=T^{k} .(\operatorname{Out}(T) \times P)$. Then

$$
G_{\alpha}=\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, \quad t_{i}=x \text { if } i \in \Delta_{2}, \quad t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi=1$ since π preserves $[k]=$ $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$.

A construction

Set $\alpha=D$ and suppose $G=T^{k} .(\operatorname{Out}(T) \times P)$. Then

$$
G_{\alpha}=\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, \quad t_{i}=x \text { if } i \in \Delta_{2}, \quad t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi=1$ since π preserves $[k]=$ $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$. Thus, $a \in C_{\text {Aut }(T)}(x) \cap C_{\text {Aut }(T)}(y)=1$ and so $g=1$.

A construction

Set $\alpha=D$ and suppose $G=T^{k} .(\operatorname{Out}(T) \times P)$. Then

$$
G_{\alpha}=\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, \quad t_{i}=x \text { if } i \in \Delta_{2}, \quad t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi=1$ since π preserves $[k]=$ $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$. Thus, $a \in C_{\text {Aut }(T)}(x) \cap C_{\text {Aut }(T)}(y)=1$ and so $g=1$.
Fawcett, 2013: $P \neq A_{k}, S_{k} \Longrightarrow b(G)=2$.

A construction

Set $\alpha=D$ and suppose $G=T^{k} .(\operatorname{Out}(T) \times P)$. Then

$$
G_{\alpha}=\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\} \cong \operatorname{Aut}(T) \times P
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, \quad t_{i}=x \text { if } i \in \Delta_{2}, \quad t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi=1$ since π preserves $[k]=$ $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$. Thus, $a \in C_{\text {Aut }(T)}(x) \cap C_{\text {Aut }(T)}(y)=1$ and so $g=1$.
Fawcett, 2013: $P \neq A_{k}, S_{k} \Longrightarrow b(G)=2$.
Remark. This method is not useful for $P \in\left\{A_{k}, S_{k}\right\}$.

Holomorph

Let $X=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$.

Holomorph

Let $X=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$. Recall that
Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists \Delta \subseteq T$ such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.

Holomorph

Let $X=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$. Recall that
Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists \Delta \subseteq T$ such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.

Assume $3 \leqslant k \leqslant|T|-3$ and $G=T^{k} .\left(\operatorname{Out}(T) \times S_{k}\right)$.

Holomorph

Let $X=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$. Recall that
Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists \Delta \subseteq T$ such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.

Assume $3 \leqslant k \leqslant|T|-3$ and $G=T^{k}$. $\left(\operatorname{Out}(T) \times S_{k}\right)$.
Let $\Delta=\left\{t_{1}, \ldots, t_{k}\right\}$ be such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.

Holomorph

Let $X=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$. Recall that
Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists \Delta \subseteq T$ such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.

Assume $3 \leqslant k \leqslant|T|-3$ and $G=T^{k}$. $\left(\operatorname{Out}(T) \times S_{k}\right)$.
Let $\Delta=\left\{t_{1}, \ldots, t_{k}\right\}$ be such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.
Let $\alpha=D$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right)$.

Holomorph

Let $X=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$. Recall that
Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists \Delta \subseteq T$ such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.

Assume $3 \leqslant k \leqslant|T|-3$ and $G=T^{k}$. $\left(\operatorname{Out}(T) \times S_{k}\right)$.
Let $\Delta=\left\{t_{1}, \ldots, t_{k}\right\}$ be such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.
Let $\alpha=D$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right)$.
Note. If $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$, then $t_{i \pi}=x t_{i}^{a}$ for some $x \in T$, so $x^{-1} a \in X_{\{\Delta\}}$.

Holomorph

Let $X=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$. Recall that
Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists \Delta \subseteq T$ such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.
Assume $3 \leqslant k \leqslant|T|-3$ and $G=T^{k}$. $\left(\operatorname{Out}(T) \times S_{k}\right)$.
Let $\Delta=\left\{t_{1}, \ldots, t_{k}\right\}$ be such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.
Let $\alpha=D$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right)$.
Note. If $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$, then $t_{i \pi}=x t_{i}^{a}$ for some $x \in T$, so $x^{-1} a \in X_{\{\Delta\}}$. Thus, $a=1$ and $x=1$, which implies $\pi=1$ as t_{1}, \ldots, t_{k} are distinct. Hence $g=1$.

Holomorph

Let $X=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$. Recall that
Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists \Delta \subseteq T$ such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.
Assume $3 \leqslant k \leqslant|T|-3$ and $G=T^{k}$. $\left(\operatorname{Out}(T) \times S_{k}\right)$.
Let $\Delta=\left\{t_{1}, \ldots, t_{k}\right\}$ be such that $|\Delta|=k$ and $X_{\{\Delta\}}=1$.
Let $\alpha=D$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right)$.
Note. If $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$, then $t_{i \pi}=x t_{i}^{a}$ for some $x \in T$, so $x^{-1} a \in X_{\{\Delta\}}$. Thus, $a=1$ and $x=1$, which implies $\pi=1$ as t_{1}, \ldots, t_{k} are distinct. Hence $g=1$.

Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$ and $G=T^{k}$. $\left(\operatorname{Out}(T) \times S_{k}\right)$, then $b(G)=2$.

Base sizes

Theorem (H, 2023+)
Suppose $G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P)$ is a diagonal type primitive group of top group P. Then $b(G)=2$ iff one of the following holds:

- $P \notin\left\{A_{k}, S_{k}\right\}$;
- $3 \leqslant k \leqslant|T|-3$;
- $k \in\{|T|-2,|T|-1\}$ and $S_{k} \nless G$.

Base sizes

Theorem (H, 2023+)

Suppose $G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P)$ is a diagonal type primitive group of top group P. Then $b(G)=2$ iff one of the following holds:

- $P \notin\left\{A_{k}, S_{k}\right\}$;
- $3 \leqslant k \leqslant|T|-3$;
- $k \in\{|T|-2,|T|-1\}$ and $S_{k} \notin G$.

Theorem (H, 2023+)

Suppose G is a diagonal type primitive group. Then $b(G)$ is known. \checkmark

Part IV

Connections and related problems

Subsets with trivial stabiliser

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a primitive group. Assume $G \notin\{\operatorname{Sym}(\Omega), \operatorname{Alt}(\Omega)\}$.

Subsets with trivial stabiliser

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a primitive group. Assume $G \notin\{\operatorname{Sym}(\Omega), \operatorname{Alt}(\Omega)\}$. Recall. Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.

Subsets with trivial stabiliser

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a primitive group. Assume $G \notin\{\operatorname{Sym}(\Omega), \operatorname{Alt}(\Omega)\}$. Recall. Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
Note. If $k<b(G)$ and $|\Delta|=k$, then $G_{\{\Delta\}} \geqslant G_{(\Delta)}>1$.

Subsets with trivial stabiliser

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a primitive group. Assume $G \notin\{\operatorname{Sym}(\Omega), \operatorname{Alt}(\Omega)\}$. Recall. Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.

Note. If $k<b(G)$ and $|\Delta|=k$, then $G_{\{\Delta\}} \geqslant G_{(\Delta)}>1$.
Define the following property:

$$
\begin{equation*}
\forall b(G) \leqslant k \leqslant|\Omega|-b(G), \exists \Delta \subseteq \Omega \text { s.t. }|\Delta|=k \text { and } G_{\{\Delta\}}=1 . \tag{*}
\end{equation*}
$$

Subsets with trivial stabiliser

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a primitive group. Assume $G \notin\{\operatorname{Sym}(\Omega), \operatorname{Alt}(\Omega)\}$. Recall. Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
Note. If $k<b(G)$ and $|\Delta|=k$, then $G_{\{\Delta\}} \geqslant G_{(\Delta)}>1$.
Define the following property:

$$
\forall b(G) \leqslant k \leqslant|\Omega|-b(G), \exists \Delta \subseteq \Omega \text { s.t. }|\Delta|=k \text { and } G_{\{\Delta\}}=1
$$

Problem. Classify the finite primitive groups with property (\star).

Subsets with trivial stabiliser

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a primitive group. Assume $G \notin\{\operatorname{Sym}(\Omega), \operatorname{Alt}(\Omega)\}$.
Recall. Apart from 43 exceptions, $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
Note. If $k<b(G)$ and $|\Delta|=k$, then $G_{\{\Delta\}} \geqslant G_{(\Delta)}>1$.
Define the following property:

$$
\forall b(G) \leqslant k \leqslant|\Omega|-b(G), \exists \Delta \subseteq \Omega \text { s.t. }|\Delta|=k \text { and } G_{\{\Delta\}}=1
$$

Problem. Classify the finite primitive groups with property (\star).
Theorem (H, 2023+)
If G is holomorph simple, then G has the property (\star).

Automorphisms

Let G be a non-abelian finite group. For $S \subseteq G \backslash\{1\}$, let

$$
\operatorname{Aut}(G, S)=\left\{g \in \operatorname{Aut}(G): S^{g}=S\right\}
$$

Automorphisms

Let G be a non-abelian finite group. For $S \subseteq G \backslash\{1\}$, let

$$
\operatorname{Aut}(G, S)=\left\{g \in \operatorname{Aut}(G): S^{g}=S\right\}
$$

and define the property

$$
\forall 2 \leqslant k \leqslant|G|-3, \exists S \subseteq G \backslash\{1\} \text { s.t. }|S|=k \text { and } \operatorname{Aut}(G, S)=1 . \quad(\star \star)
$$

Automorphisms

Let G be a non-abelian finite group. For $S \subseteq G \backslash\{1\}$, let

$$
\operatorname{Aut}(G, S)=\left\{g \in \operatorname{Aut}(G): S^{g}=S\right\}
$$

and define the property

$$
\forall 2 \leqslant k \leqslant|G|-3, \exists S \subseteq G \backslash\{1\} \text { s.t. }|S|=k \text { and } \operatorname{Aut}(G, S)=1 . \quad(\star \star)
$$

Note. If $|S|=1$ or $|G|-2$, then $\operatorname{Aut}(G, S) \neq 1$.

Automorphisms

Let G be a non-abelian finite group. For $S \subseteq G \backslash\{1\}$, let

$$
\operatorname{Aut}(G, S)=\left\{g \in \operatorname{Aut}(G): S^{g}=S\right\}
$$

and define the property

$$
\forall 2 \leqslant k \leqslant|G|-3, \exists S \subseteq G \backslash\{1\} \text { s.t. }|S|=k \text { and } \operatorname{Aut}(G, S)=1 . \quad(\star \star)
$$

Note. If $|S|=1$ or $|G|-2$, then $\operatorname{Aut}(G, S) \neq 1$.
Problem. Classify the non-abelian finite groups G with the property ($\star \star$).

Automorphisms

Let G be a non-abelian finite group. For $S \subseteq G \backslash\{1\}$, let

$$
\operatorname{Aut}(G, S)=\left\{g \in \operatorname{Aut}(G): S^{g}=S\right\}
$$

and define the property

$$
\forall 2 \leqslant k \leqslant|G|-3, \exists S \subseteq G \backslash\{1\} \text { s.t. }|S|=k \text { and } \operatorname{Aut}(G, S)=1
$$

Note. If $|S|=1$ or $|G|-2$, then $\operatorname{Aut}(G, S) \neq 1$.
Problem. Classify the non-abelian finite groups G with the property ($\star \star$).
Theorem (H, 2023+)
If G is simple, then G has the property $(\star \star)$.

Asymptotic results

Let T be a non-abelian finite simple group and define

$$
\mathbb{P}_{k}(T):=\frac{|\{S \subseteq T \backslash\{1\}:|S|=k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}
$$

be the probability that a random k-subset of $T \backslash\{1\}$ has non-trivial setwise stabiliser in Aut (T).

Asymptotic results

Let T be a non-abelian finite simple group and define

$$
\mathbb{P}_{k}(T):=\frac{|\{S \subseteq T \backslash\{1\}:|S|=k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|_{k}^{-1}}{k}}
$$

be the probability that a random k-subset of $T \backslash\{1\}$ has non-trivial setwise stabiliser in Aut (T).

Recall. $\mathbb{P}_{k}(T)<1$ if $2 \leqslant k \leqslant|T|-3$.

Asymptotic results

Let T be a non-abelian finite simple group and define

$$
\mathbb{P}_{k}(T):=\frac{|\{S \subseteq T \backslash\{1\}:|S|=k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}
$$

be the probability that a random k-subset of $T \backslash\{1\}$ has non-trivial setwise stabiliser in Aut (T).

Recall. $\mathbb{P}_{k}(T)<1$ if $2 \leqslant k \leqslant|T|-3$.

Theorem (H, 2023+)

If $k \geqslant 4$, then $\mathbb{P}_{k}(T) \rightarrow 0$ as $|T| \rightarrow \infty$.

Asymptotic results

Let T be a non-abelian finite simple group and define

$$
\mathbb{P}_{k}(T):=\frac{|\{S \subseteq T \backslash\{1\}:|S|=k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}
$$

be the probability that a random k-subset of $T \backslash\{1\}$ has non-trivial setwise stabiliser in Aut (T).

Recall. $\mathbb{P}_{k}(T)<1$ if $2 \leqslant k \leqslant|T|-3$.
Theorem (H, 2023+)
If $k \geqslant 4$, then $\mathbb{P}_{k}(T) \rightarrow 0$ as $|T| \rightarrow \infty$.

Theorem (H, 2023+)
If $5 \log |T|<k<|T|-5 \log |T|$, then $\mathbb{P}_{k}(T)<1 /|T|$.

Asymptotic results

Let T be a non-abelian finite simple group and define

$$
\mathbb{P}_{k}(T):=\frac{|\{S \subseteq T \backslash\{1\}:|S|=k, \operatorname{Aut}(T, S) \neq 1\}|}{\binom{|T|-1}{k}}
$$

be the probability that a random k-subset of $T \backslash\{1\}$ has non-trivial setwise stabiliser in Aut (T).
Recall. $\mathbb{P}_{k}(T)<1$ if $2 \leqslant k \leqslant|T|-3$.

Theorem (H, 2023+)

If $k \geqslant 4$, then $\mathbb{P}_{k}(T) \rightarrow 0$ as $|T| \rightarrow \infty$.

Theorem (H, 2023+)
If $5 \log |T|<k<|T|-5 \log |T|$, then $\mathbb{P}_{k}(T)<1 /|T|$.

An application: existence of DRR with prescribed valency. (Pablo Spiga)

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Remark. Other than diagonal type groups, this still remains very open.

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Remark. Other than diagonal type groups, this still remains very open. Note. $b(G) \leqslant 2 \Longleftrightarrow G_{\alpha}$ has a regular orbit on Ω.

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Remark. Other than diagonal type groups, this still remains very open.
Note. $b(G) \leqslant 2 \Longleftrightarrow G_{\alpha}$ has a regular orbit on Ω.
Let $r(G)$ be the number of regular G_{α}-orbits on Ω.

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Remark. Other than diagonal type groups, this still remains very open.
Note. $b(G) \leqslant 2 \Longleftrightarrow G_{\alpha}$ has a regular orbit on Ω.
Let $r(G)$ be the number of regular G_{α}-orbits on Ω.
Chen \& H, 2022: General method in computing $r(G)$.

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Remark. Other than diagonal type groups, this still remains very open.
Note. $b(G) \leqslant 2 \Longleftrightarrow G_{\alpha}$ has a regular orbit on Ω.
Let $r(G)$ be the number of regular G_{α}-orbits on Ω.
Chen \& H, 2022: General method in computing $r(G)$.

Problem. Classify the finite primitive groups G with $r(G)=1$.

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Remark. Other than diagonal type groups, this still remains very open.
Note. $b(G) \leqslant 2 \Longleftrightarrow G_{\alpha}$ has a regular orbit on Ω.
Let $r(G)$ be the number of regular G_{α}-orbits on Ω.
Chen \& H, 2022: General method in computing $r(G)$.

Problem. Classify the finite primitive groups G with $r(G)=1$.

- H, 2023+: G diagonal type \checkmark

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Remark. Other than diagonal type groups, this still remains very open.
Note. $b(G) \leqslant 2 \Longleftrightarrow G_{\alpha}$ has a regular orbit on Ω.
Let $r(G)$ be the number of regular G_{α}-orbits on Ω.
Chen \& H, 2022: General method in computing $r(G)$.

Problem. Classify the finite primitive groups G with $r(G)=1$.

- H, 2023+: G diagonal type \checkmark
- Burness \& H, 2022: G almost simple, G_{α} soluble \checkmark

Bases and regular suborbits

Problem. Classify the finite primitive groups G with $b(G)=2$.

Remark. Other than diagonal type groups, this still remains very open.
Note. $b(G) \leqslant 2 \Longleftrightarrow G_{\alpha}$ has a regular orbit on Ω.
Let $r(G)$ be the number of regular G_{α}-orbits on Ω.
Chen \& H, 2022: General method in computing $r(G)$.

Problem. Classify the finite primitive groups G with $r(G)=1$.

- H, 2023+: G diagonal type \checkmark
- Burness \& H, 2022: G almost simple, G_{α} soluble \checkmark
- Burness \& H, 2023: Some product type groups.

Thank you!

