
Symmetry breaking on primitive groups

Hong Yi Huang

Seminars on Groups and Graphs

4 March 2023



Automorphisms

Throughout, everything is finite.

Let Γ = (VΓ,EΓ) be a simple undirected graph.

Automorphism: g ∈ Sym(VΓ) such that v ∼ w ⇐⇒ vg ∼ wg .

Automorphism group Aut(Γ): The group of all the automorphisms.

Γ = Kn =⇒ Aut(Γ) ∼= Sn

Γ = Cn (n > 3) =⇒ Aut(Γ) ∼= D2n

How can we “break” the symmetries of a graph?

Colouring vertices (setwise)

Fixing vertices (pointwise)
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Part I

Distinguishing numbers for groups and graphs



Colourings
Consider Γ = C5, where we have Aut(Γ) ∼= D10.

Which automorphisms preserve the following colourings?

C1 = C2 =

C3 = C4 =

Aut(Γ,C1) ∼= Aut(Γ,C2) ∼= Aut(Γ,C3) ∼= Z2, and Aut(Γ,C4) = 1.

Distinguishing colouring: A colouring C of Γ such that Aut(Γ,C ) = 1.

Distinguishing number D(Γ): The minimal number of colours in a distin-
guishing colouring of Γ. (e.g. D(C5) = 3.)
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Partitions

Note. A colouring is a partition of vertices.

Let G 6 Sym(Ω) be a transitive permutation group of degree n.

Distinguishing partition: A partition Π = {π1, . . . , πm} of Ω such that

m⋂
i=1

G{πi} = 1.

Distinguishing number D(G ): The minimal size of a dist. partition.

Remark. D(Γ) = D(Aut(Γ)), so D(D10) = 3 and D(D2n) = 2 for n > 6.

Examples

D(Sn) = n; D(An) = n − 1.

D(G ) = 1 ⇐⇒ G = 1.

G 6= 1 is regular =⇒ D(G ) = 2.
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Primitive groups
Note. The following statements are equivalent.

D(G ) = 2;

∃ ∆ ⊆ Ω such that G{∆} = 1.

G is called primitive if Gα is maximal in G .

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997)

G 6= An,Sn primitive =⇒ D(G ) = 2, with 43 exceptions of degree 6 32.

Dolfi, 2000: D(G ) 6 4 for each exception.

Theorem (H, 2023+)

Suppose T non-abelian simple, G = Hol(T ) = T : Aut(T ), Ω = T and
3 6 k 6 |T | − 3. Then

∃ ∆ ⊆ Ω such that |∆| = k and G{∆} = 1.
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Part II

Bases for permutation groups



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂

α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.
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Bases

Let G 6 Sym(Ω) be a transitive permutation group.

Base: A subset ∆ ⊆ Ω such that G(∆) =
⋂

α∈∆ Gα = 1.

Base size b(G ): The minimal size of a base for G .

Remark. fix(Γ) = b(Aut(Γ)).

G = Sn, Ω = {1, . . . , n} =⇒ b(G ) = n − 1.

G = D2n (n > 3), Ω = {1, . . . , n} =⇒ b(G ) = 2.

b(G ) = 0 ⇐⇒ G = 1.

D(G ) 6 b(G ) + 1.

G = GLd(q), Ω = Fd
q \ {0} =⇒ b(G ) = d .

Klavžar, Wong & Zhu, 2006: D(G ) = 2 if Fd
q 6= F2

2, F3
2, F2

4 or F2
3.



Bases

Let G 6 Sym(Ω) be a transitive permutation group.

Base: A subset ∆ ⊆ Ω such that G(∆) =
⋂

α∈∆ Gα = 1.

Base size b(G ): The minimal size of a base for G .

Remark. fix(Γ) = b(Aut(Γ)).

G = Sn, Ω = {1, . . . , n} =⇒ b(G ) = n − 1.

G = D2n (n > 3), Ω = {1, . . . , n} =⇒ b(G ) = 2.

b(G ) = 0 ⇐⇒ G = 1.

D(G ) 6 b(G ) + 1.

G = GLd(q), Ω = Fd
q \ {0} =⇒ b(G ) = d .
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Base sizes

Observation: If ∆ is a base and x , y ∈ G ,

then

αx = αy for all α ∈ ∆ ⇐⇒ xy−1 ∈
⋂
α∈∆

Gα = G(∆) ⇐⇒ x = y .

That is, each group element is uniquely determined by its action on ∆.

|G | 6 |Ω|b(G), so log|Ω| |G | 6 b(G ).

A small base ∆ provides an efficient way to store the elements of G ,
using |∆|-tuples rather than |Ω|-tuples.

Observation: If ∆ = {α1, . . . , αb(G)} is a base and G (k) =
⋂k

i=1 Gαi then

G > G (1) > G (2) > · · · > G (b(G)−1) > G (b(G)) = 1.

Thus, 2b(G) 6 |G | and so log|Ω| |G | 6 b(G ) 6 log2 |G |.
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Some general bounds

Let G be primitive with degree n.

Questions: Better bounds on b(G )? Or even determine b(G )?

Conjecture (Pyber, 1993)

There is an absolute constant c such that logn |G | 6 b(G ) 6 c logn |G |.

Duyan, Halasi & Maróti, 2018: Pyber’s conjecture is true.

Halasi, Liebeck & Maróti, 2019: b(G ) 6 2 logn |G |+ 24.

Soluble groups:

Seress, 1996: G soluble =⇒ b(G ) 6 4

Burness, 2021: Gα soluble =⇒ b(G ) 6 5
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O’Nan-Scott families

Affine: G = V :H 6 AGL(V ), where V = Fd
p and H 6 GL(V ) irreducible.

Halasi & Podoski, 2016: b(G ) 6 3 if (|V |, |H|) = 1.

H/Z (H) quasisimple: partial results.

Twisted wreath: G = T k :P, P 6 Sk transitive.

Fawcett, 2022: b(G ) = 2 if P is quasiprimitive.

Product type: G 6 L o P in its product action, L 6 Sym(Γ) primitive.

Bailey & Cameron, 2011: The case where G = L o P.

e.g. b(L o P) = 2 ⇐⇒ Lγ has at least D(P) regular orbits on Γ.

Burness & H, 2023: partial results on G < L o P.
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Almost simple groups

Alternating socle Am:

Burness, Guralnick & Saxl, 2011: Gα is primitive on [m] X

Morris & Spiga, 2021: Gα is imprimitive on [m] X

Gα is intransitive: partial results (Halasi, 2012)

Sporadic socle: Done X (Burness, O’Brien & Wilson, 2010)

soc(G ) is Lie type:

Burness, Guralnick & Saxl, 2014: G classical and Gα ∈ S X

Burness, Liebeck & Shalev, 2007: b(G ) 6 6 if G is exceptional

Burness & Thomas, 2023: b(G ) = 2 if G is exceptional and Gα is
the normaliser of a maximal torus X
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Part III

Base sizes of diagonal type primitive groups



Diagonal type primitive groups

Let T be a non-abelian finite simple group.

Write Ω = [T k : D], where D = {(t, . . . , t) : t ∈ T}, so T k 6 Sym(Ω).

Diagonal type group: G with T k P G 6 NSym(Ω)(T k).

Note. NSym(Ω)(T k) = T k .(Out(T )×Sk) is a maximal subgroup of Sym(Ω).

G induces a subgroup P of Sk on the k components.

G is primitive ⇐⇒ P is primitive, or k = 2 and P = 1.

Thus, T k P G 6 T k .(Out(T )× P).
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G is primitive ⇐⇒ P is primitive, or k = 2 and P = 1.

Thus, T k P G 6 T k .(Out(T )× P).
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A construction

Set α = D and suppose G = T k .(Out(T )× P). Then

Gα = {(a, . . . , a)π : a ∈ Aut(T ), π ∈ P} ∼= Aut(T )× P.

Note. If k > 32 and P 6= Ak ,Sk then D(P) = 2, so there exists a
distinguishing partition [k] = ∆1 ∪∆2 ∪∆3 of distinct sizes.

Write T = 〈x , y〉 and β = D(t1, . . . , tk) ∈ Ω, where

ti = 1 if i ∈ ∆1, ti = x if i ∈ ∆2, ti = y if i ∈ ∆3.

Suppose g = (a, . . . , a)π ∈ Gα ∩ Gβ. Then π = 1 since π preserves [k] =
∆1 ∪∆2 ∪∆3. Thus, a ∈ CAut(T )(x) ∩ CAut(T )(y) = 1 and so g = 1.

Fawcett, 2013: P 6= Ak ,Sk =⇒ b(G ) = 2.

Remark. This method is not useful for P ∈ {Ak ,Sk}.
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Holomorph

Let X = Hol(T ) = T : Aut(T ) 6 Sym(T ).

Recall that

Theorem (H, 2023+)

If 3 6 k 6 |T | − 3, then ∃ ∆ ⊆ T such that |∆| = k and X{∆} = 1.

Assume 3 6 k 6 |T | − 3 and G = T k .(Out(T )× Sk).

Let ∆ = {t1, . . . , tk} be such that |∆| = k and X{∆} = 1.

Let α = D and β = D(t1, . . . , tk).

Note. If g = (a, . . . , a)π ∈ Gα ∩ Gβ, then tiπ = xtai for some x ∈ T , so
x−1a ∈ X{∆}. Thus, a = 1 and x = 1, which implies π = 1 as t1, . . . , tk are
distinct. Hence g = 1.

Theorem (H, 2023+)

If 3 6 k 6 |T | − 3 and G = T k .(Out(T )× Sk), then b(G ) = 2.
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Base sizes

Theorem (H, 2023+)

Suppose G 6 T k .(Out(T )× P) is a diagonal type primitive group of top
group P. Then b(G ) = 2 iff one of the following holds:

P /∈ {Ak , Sk};
3 6 k 6 |T | − 3;

k ∈ {|T | − 2, |T | − 1} and Sk 66 G .

Theorem (H, 2023+)

Suppose G is a diagonal type primitive group. Then b(G ) is known. X
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Part IV

Connections and related problems



Subsets with trivial stabiliser

Let G 6 Sym(Ω) be a primitive group. Assume G /∈ {Sym(Ω),Alt(Ω)}.

Recall. Apart from 43 exceptions, ∃ ∆ ⊆ Ω such that G{∆} = 1.

Note. If k < b(G ) and |∆| = k , then G{∆} > G(∆) > 1.

Define the following property:

∀ b(G ) 6 k 6 |Ω| − b(G ), ∃ ∆ ⊆ Ω s.t. |∆| = k and G{∆} = 1. (?)

Problem. Classify the finite primitive groups with property (?).

Theorem (H, 2023+)

If G is holomorph simple, then G has the property (?).
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Automorphisms

Let G be a non-abelian finite group. For S ⊆ G \ {1}, let

Aut(G ,S) = {g ∈ Aut(G ) : Sg = S}

and define the property

∀ 2 6 k 6 |G | − 3, ∃ S ⊆ G \ {1} s.t. |S | = k and Aut(G ,S) = 1. (??)

Note. If |S | = 1 or |G | − 2, then Aut(G ,S) 6= 1.

Problem. Classify the non-abelian finite groups G with the property (??).

Theorem (H, 2023+)

If G is simple, then G has the property (??).
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Asymptotic results
Let T be a non-abelian finite simple group and define

Pk(T ) :=
|{S ⊆ T \ {1} : |S | = k, Aut(T , S) 6= 1}|(|T |−1

k

)
be the probability that a random k-subset of T \ {1} has non-trivial setwise
stabiliser in Aut(T ).

Recall. Pk(T ) < 1 if 2 6 k 6 |T | − 3.

Theorem (H, 2023+)

If k > 4, then Pk(T )→ 0 as |T | → ∞.

Theorem (H, 2023+)

If 5 log |T | < k < |T | − 5 log |T |, then Pk(T ) < 1/|T |.

An application: existence of DRR with prescribed valency. (Pablo Spiga)
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Bases and regular suborbits

Problem. Classify the finite primitive groups G with b(G ) = 2.

Remark. Other than diagonal type groups, this still remains very open.

Note. b(G ) 6 2 ⇐⇒ Gα has a regular orbit on Ω.

Let r(G ) be the number of regular Gα-orbits on Ω.

Chen & H, 2022: General method in computing r(G ).

Problem. Classify the finite primitive groups G with r(G ) = 1.

H, 2023+: G diagonal type X

Burness & H, 2022: G almost simple, Gα soluble X

Burness & H, 2023: Some product type groups.
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Thank you!


