Permutation groups, transitive subgroups and bases

Hongyi Huang

Pure Maths Colloquium, University of St Andrews

17 April 2025

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$, and let $\alpha \in \Omega$.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$, and let $\alpha \in \Omega$.

Point stabiliser: $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}.$

Orbit: $\alpha^{G} = \{\alpha^{g} : g \in G\}.$

Recall (Orbit-Stabiliser Theorem). $|G| = |G_{\alpha}| \cdot |\alpha^{G}|$.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$, and let $\alpha \in \Omega$.

Point stabiliser: $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}.$

Orbit: $\alpha^{G} = \{\alpha^{g} : g \in G\}.$

Recall (Orbit-Stabiliser Theorem). $|G| = |G_{\alpha}| \cdot |\alpha^{G}|$.

G is called **transitive** if $\alpha^{G} = \Omega$ (so $|G| = |G_{\alpha}| \cdot |\Omega|$).

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$, and let $\alpha \in \Omega$.

Point stabiliser: $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}.$

Orbit: $\alpha^{G} = \{\alpha^{g} : g \in G\}.$

Recall (Orbit-Stabiliser Theorem). $|G| = |G_{\alpha}| \cdot |\alpha^{G}|$.

G is called **transitive** if $\alpha^{G} = \Omega$ (so $|G| = |G_{\alpha}| \cdot |\Omega|$).

In this setting, Ω can be identified with the cosets G/H, where $H=G_{\alpha}$, with $(Hx)^g=Hxg$ for any $x,g\in G$.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$, and let $\alpha \in \Omega$.

Point stabiliser: $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}.$

Orbit: $\alpha^{G} = \{\alpha^{g} : g \in G\}.$

Recall (Orbit-Stabiliser Theorem). $|G| = |G_{\alpha}| \cdot |\alpha^{G}|$.

G is called **transitive** if $\alpha^{G} = \Omega$ (so $|G| = |G_{\alpha}| \cdot |\Omega|$).

In this setting, Ω can be identified with the cosets G/H, where $H=G_{\alpha}$, with $(Hx)^g=Hxg$ for any $x,g\in G$.

Conversely, if H < G is core-free, then $G \leq \text{Sym}(G/H)$ is transitive.

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a permutation group with $|\Omega| < \infty$, and let $\alpha \in \Omega$.

Point stabiliser: $G_{\alpha} = \{g \in G : \alpha^g = \alpha\}.$

Orbit: $\alpha^{G} = \{\alpha^{g} : g \in G\}.$

Recall (Orbit-Stabiliser Theorem). $|G| = |G_{\alpha}| \cdot |\alpha^{G}|$.

G is called **transitive** if $\alpha^G = \Omega$ (so $|G| = |G_{\alpha}| \cdot |\Omega|$).

In this setting, Ω can be identified with the cosets G/H, where $H=G_{\alpha}$, with $(Hx)^g=Hxg$ for any $x,g\in G$.

Conversely, if H < G is core-free, then $G \leqslant \operatorname{Sym}(G/H)$ is transitive.

Example

Take H = 1. Then $G \leq \text{Sym}(G)$ is given by right multiplication.

In particular, every (abstract) group is isomorphic to a transitive permutation group.

G is called **primitive** if G is transitive and G_{α} is a maximal subgroup of G.

Remark. These are the basic building blocks of all permutation groups.

G is called **primitive** if G is transitive and G_{α} is a maximal subgroup of G.

Remark. These are the basic building blocks of all permutation groups.

Note. NOT every (abstract) group is isomorphic to a primitive permutation group (e.g. a cyclic group of order 4, an abelian group of composite order).

G is called **primitive** if G is transitive and G_{α} is a maximal subgroup of G.

Remark. These are the basic building blocks of all permutation groups.

Note. NOT every (abstract) group is isomorphic to a primitive permutation group (e.g. a cyclic group of order 4, an abelian group of composite order).

The O'Nan-Scott theorem divides finite primitive groups into 5 types, in terms of their structures and actions.

- Affine
- Almost simple
- Diagonal type
- Product type
- Twisted wreath product

Part I. Transitive subgroups of primitive groups

Part II. Bases for primitive groups

Let G be a finite group and $H, K \leq G$. Write $HK = \{hk : h \in H, k \in K\}$.

Let G be a finite group and $H, K \leq G$. Write $HK = \{hk : h \in H, k \in K\}$.

Fact. $G = HK \iff K$ is transitive on G/H.

The expression G = HK is called a **factorisation** of G.

Let G be a finite group and $H, K \leq G$. Write $HK = \{hk : h \in H, k \in K\}$.

Fact. $G = HK \iff K$ is transitive on G/H.

The expression G = HK is called a **factorisation** of G.

Example

 $G = S_n$, $H = S_{n-1}$ and K is a transitive group on [n].

Let G be a finite group and $H, K \leq G$. Write $HK = \{hk : h \in H, k \in K\}$.

Fact. $G = HK \iff K$ is transitive on G/H.

The expression G = HK is called a **factorisation** of G.

Example

$$G = S_n$$
, $H = S_{n-1}$ and K is a transitive group on $[n]$.

Example

$$q=p^f$$
, $G=\mathsf{PGL}_2(q)$, $H=C_p^f$: C_{q-1} is the stabiliser of a 1-space of \mathbb{F}_q^2 . The group $K=C_{q+1}$ is transitive on 1-spaces, so we have $G=HK$.

Let G be a finite group and $H, K \leq G$. Write $HK = \{hk : h \in H, k \in K\}$.

Fact. $G = HK \iff K$ is transitive on G/H.

The expression G = HK is called a **factorisation** of G.

Example

$$G = S_n$$
, $H = S_{n-1}$ and K is a transitive group on $[n]$.

Example

$$q=p^f$$
, $G=\operatorname{PGL}_2(q)$, $H=C_p^f:C_{q-1}$ is the stabiliser of a 1-space of \mathbb{F}_q^2 . The group $K=C_{q+1}$ is transitive on 1-spaces, so we have $G=HK$.

Example

The group $PGL_2(q)$ is transitive on the triples of distinct 1-spaces of \mathbb{F}_q^2 , so we have the factorisation $S_{q+1} = S_{q-2} \, PGL_2(q)$.

G is called **almost simple** if $T \leq G \leq \operatorname{Aut}(T)$ for some non-abelian simple group T, and $T = \operatorname{soc}(G)$ is the **socle** of G.

G is called almost simple if $T \leq G \leq \operatorname{Aut}(T)$ for some non-abelian simple group T, and $T = \operatorname{soc}(G)$ is the socle of G.

Examples. A_n , S_n , $PGL_n(q)$, $PSL_n(q)$, M...

G is called **almost simple** if $T \leq G \leq \operatorname{Aut}(T)$ for some non-abelian simple group *T*, and $T = \operatorname{soc}(G)$ is the **socle** of *G*.

Examples. A_n , S_n , $PGL_n(q)$, $PSL_n(q)$, M...

Contributed by Li, Liebeck, Praeger, Saxl, Wang, Xia...

Theorem. The factorisations of almost simple groups are classified.

Final step: Feng, Li, Li, Wang, Xia & Zou, 2024.

G is called **almost simple** if $T \leq G \leq \operatorname{Aut}(T)$ for some non-abelian simple group *T*, and $T = \operatorname{soc}(G)$ is the **socle** of *G*.

Examples. A_n , S_n , $PGL_n(q)$, $PSL_n(q)$, M...

Contributed by Li, Liebeck, Praeger, Saxl, Wang, Xia...

Theorem. The factorisations of almost simple groups are classified.

Final step: Feng, Li, Li, Wang, Xia & Zou, 2024.

Corollary. The transitive subgroups of almost simple primitive groups are determined, up to conjugacy.

Main theme. Determine the transitive subgroups of primitive groups.

Recall the O'Nan-Scott theorem:

- Affine
- Almost simple
- Diagonal type
- Product type
- Twisted wreath products

Main theme. Determine the transitive subgroups of primitive groups.

Recall the O'Nan-Scott theorem:

- Affine
- Almost simple √
- Diagonal type
- Product type
- Twisted wreath products

Problem. Classify the **regular** subgroups and the **soluble** transitive subgroups of primitive groups of **diagonal type**, up to conjugacy.

Remark. A transitive group $G \leq \text{Sym}(\Omega)$ is called **regular** if $|G| = |\Omega|$.

Let T be a non-abelian finite simple group and let

$$G = Hol(T) = T: Aut(T) = T^2. Out(T)$$

be the **holomorph** of T. Then $G \leqslant \operatorname{Sym}(T)$ is primitive of diagonal type.

Let T be a non-abelian finite simple group and let

$$G = Hol(T) = T: Aut(T) = T^2. Out(T)$$

be the **holomorph** of T. Then $G \leq \text{Sym}(T)$ is primitive of diagonal type. **Notes.**

• $G_1 = \operatorname{Aut}(T)$.

Let T be a non-abelian finite simple group and let

$$G = Hol(T) = T: Aut(T) = T^2. Out(T)$$

be the **holomorph** of T. Then $G \leq \text{Sym}(T)$ is primitive of diagonal type. **Notes.**

- $G_1 = \operatorname{Aut}(T)$.
 - G has 2 regular normal subgroups isomorphic to T.

Let T be a non-abelian finite simple group and let

$$G = Hol(T) = T: Aut(T) = T^2. Out(T)$$

be the **holomorph** of T. Then $G \leq \text{Sym}(T)$ is primitive of diagonal type.

Notes.

- $G_1 = Aut(T)$.
- ullet G has 2 regular normal subgroups isomorphic to \mathcal{T} .

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T)$$
.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H,K\leqslant \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T)$$
.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$

Example

 $B \cong T$ is regular normal: H = T and K = 1.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$

Example

 $B \cong T$ is regular normal: H = T and K = 1.

Example

$$q$$
 odd, $T = A_{q+1}$, $B \cong (A_{q-2} \times \mathsf{PSL}_2(q)).2$:

$$H=S_{q-2},\ K=\mathsf{PGL}_2(q),\ \mathsf{w.r.t.}$$
 the factorisation $S_{q+1}=S_{q-2}\,\mathsf{PGL}_2(q).$

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T)$$
.

Example

 $B \cong T$ is regular normal: H = T and K = 1.

Example

q odd, $T = A_{q+1}$, $B \cong (A_{q-2} \times \mathsf{PSL}_2(q)).2$:

 $H = S_{q-2}$, $K = PGL_2(q)$, w.r.t. the factorisation $S_{q+1} = S_{q-2} PGL_2(q)$.

If T = HK, then \exists a transitive subgroup of G isomorphic to $H \times K$.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \leqslant Aut(T).$$

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \leqslant Aut(T).$$

Note. If B is soluble, then both H and K are soluble.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \leqslant Aut(T).$$

Note. If B is soluble, then both H and K are soluble.

Li & Xia, 2022: Apart from finitely many cases, we have $T = PSL_2(q)$.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T)$$
.

Note. If B is soluble, then both H and K are soluble.

Li & Xia, 2022: Apart from finitely many cases, we have $T = PSL_2(q)$.

e.g.
$$q = p^f$$
, $T = PSL_2(q)$, $H = C_p^f : C_{q-1}$, $K = C_{q+1}$, $HK = PGL_2(q)$.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \leqslant Aut(T)$$
.

Note. If B is soluble, then both H and K are soluble.

Li & Xia, 2022: Apart from finitely many cases, we have $T = PSL_2(q)$.

e.g.
$$q=p^f$$
, $T=\mathsf{PSL}_2(q)$, $H=C_p^f : C_{q-1}$, $K=C_{q+1}$, $HK=\mathsf{PGL}_2(q)$.

With more technical treatment...

Theorem (H & Wang, 2025+)

For every finite simple group T, the **soluble transitive** subgroups of Hol(T) are determined, up to conjugacy.

Regular subgroups

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \leqslant Aut(T).$$
 (*)

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \leqslant Aut(T).$$
 (*)

If B is regular, then there exists $N \triangleleft H$ and $M \triangleleft K$ such that

$$H/N \cong K/M$$
 and $|H:N| = |HK:T||H \cap K|$. $(\star\star)$

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$
 (*)

If B is regular, then there exists $N \leq H$ and $M \leq K$ such that

$$H/N \cong K/M \text{ and } |H:N| = |HK:T||H \cap K|.$$
 (**)

Much effort is needed to determine the factorisations satisfying (\star) and $(\star\star)$.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$
 (*)

If B is regular, then there exists $N \leq H$ and $M \leq K$ such that

$$H/N \cong K/M$$
 and $|H:N| = |HK:T||H \cap K|$. $(\star\star)$

Much effort is needed to determine the factorisations satisfying (\star) and $(\star\star)$.

Example

Assume $HK = S_n$ with $H = S_{n-1}$ (so K is transitive on [n]).

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$
 (*)

If B is regular, then there exists $N \leq H$ and $M \leq K$ such that

$$H/N \cong K/M$$
 and $|H:N| = |HK:T||H \cap K|$. $(\star\star)$

Much effort is needed to determine the factorisations satisfying (\star) and $(\star\star)$.

Example

Assume $HK = S_n$ with $H = S_{n-1}$ (so K is transitive on [n]). Then $(\star) + (\star\star) \iff |K| = n$ and the Sylow 2-subgroups of K are cyclic.

Regular subgroups of holomorphs and applications

Theorem (H & Wang, 2025+)

For every finite simple group T, the **regular** subgroups of Hol(T) are determined, up to conjugacy.

Regular subgroups of holomorphs and applications

Theorem (H & Wang, 2025+)

For every finite simple group T, the **regular** subgroups of Hol(T) are determined, up to conjugacy.

For a finite group Y, TFAE:

- B is isomorphic to a regular subgroup of Hol(Y);
- \exists a **Hopf-Galois structure** of type *B* on any Galois extension with Galois group *Y*.
- \exists a skew brace $(X, +, \circ)$ with $Y \cong (X, +)$ and $B \cong (X, \circ)$.

Regular subgroups of holomorphs and applications

Theorem (H & Wang, 2025+)

For every finite simple group T, the **regular** subgroups of Hol(T) are determined, up to conjugacy.

For a finite group Y, TFAE:

- B is isomorphic to a regular subgroup of Hol(Y);
- \exists a **Hopf-Galois structure** of type B on any Galois extension with Galois group Y.
- \exists a skew brace $(X, +, \circ)$ with $Y \cong (X, +)$ and $B \cong (X, \circ)$.

Theorem (H & Wang, 2025+)

- The types of Hopf-Galois structures are determined on any Galois extension whose Galois group is finite simple.
- The skew braces with finite simple additive groups are classified.

Main result

Theorem (H & Wang, 2025+). The regular and the soluble transitive subgroups of **diagonal type** groups are determined, up to conjugacy.

Main result

Theorem (H & Wang, 2025+). The regular and the soluble transitive subgroups of **diagonal type** groups are determined, up to conjugacy.

This is mainly built on

- Liebeck, Praeger & Saxl, 2000
- Morris & Spiga, 2021: Describes the regular subgroups of general diagonal type groups based on those of the holomorphs
- The results for holomorphs

Part I. Transitive subgroups of primitive groups

Part II. Bases for primitive groups

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Base: $\Delta \subseteq \Omega$ with $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Base size b(G): Minimal size of a base for G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Base: $\Delta \subseteq \Omega$ with $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Base size b(G): Minimal size of a base for G.

Other base-related invariants: Irredundant base size; Greedy base size... (Ask some of the audience)

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Base: $\Delta \subseteq \Omega$ with $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Base size b(G): Minimal size of a base for G.

Other base-related invariants: Irredundant base size; Greedy base size... (Ask some of the audience)

Examples

• $G = S_n$, $|\Omega| = n$: b(G) = n - 1.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Base:
$$\Delta \subseteq \Omega$$
 with $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Base size b(G): Minimal size of a base for G.

Other base-related invariants: Irredundant base size; Greedy base size... (Ask some of the audience)

Examples

- $G = S_n$, $|\Omega| = n$: b(G) = n 1.
- G = GL(V), $\Omega = V$: $b(G) = \dim V$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Base:
$$\Delta \subseteq \Omega$$
 with $\bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Base size b(G): Minimal size of a base for G.

Other base-related invariants: Irredundant base size; Greedy base size... (Ask some of the audience)

Examples

- $G = S_n$, $|\Omega| = n$: b(G) = n 1.
- G = GL(V), $\Omega = V$: $b(G) = \dim V$.
- $G = D_{2n}$, $|\Omega| = n$: b(G) = 2.

Abstract group theory. Write $H = G_{\alpha}$ and view $\Omega = G/H$. Then

 $b(G) = \text{minimal cardinality of a subset } S \subseteq G \text{ with } \bigcap_{g \in S} H^g = 1.$

Abstract group theory. Write $H = G_{\alpha}$ and view $\Omega = G/H$. Then

$$b(G) = \text{minimal cardinality of a subset } S \subseteq G \text{ with } \bigcap_{g \in S} H^g = 1.$$

Computational group theory. The Schreier-Sims algorithm to find |G|, to determine whether $g \in G$, or others (in polynomial time)...

Abstract group theory. Write $H = G_{\alpha}$ and view $\Omega = G/H$. Then

$$b(G) = \text{minimal cardinality of a subset } S \subseteq G \text{ with } \bigcap_{g \in S} H^g = 1.$$

Computational group theory. The **Schreier-Sims algorithm** to find |G|, to determine whether $g \in G$, or others (in polynomial time)...

Graph theory. For a graph Γ with vertex set V, let $G = \operatorname{Aut}(\Gamma) \leqslant \operatorname{Sym}(V)$. Then

$$b(G)$$
 = the fixing number of Γ
= the determining number of Γ
= the rigidity index of Γ .

Abstract group theory. Write $H = G_{\alpha}$ and view $\Omega = G/H$. Then

$$b(G) = \text{minimal cardinality of a subset } S \subseteq G \text{ with } \bigcap_{g \in S} H^g = 1.$$

Computational group theory. The Schreier-Sims algorithm to find |G|, to determine whether $g \in G$, or others (in polynomial time)...

Graph theory. For a graph Γ with vertex set V, let $G = \operatorname{Aut}(\Gamma) \leqslant \operatorname{Sym}(V)$. Then

$$b(G) = \text{the fixing number of } \Gamma$$

= the **determining number** of Γ
= the **rigidity index** of Γ .

Representation theory. For $H \leq G$ core-free, the **depth** $d_G(H)$ is the minimal depth of the inclusion of complex group algebras $\mathbb{C}H \subseteq \mathbb{C}G$. Then

$$d_G(H) \leqslant 2b(G) - 1$$

with respect to the permutation representation of G on G/H.

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for any } \alpha \in \Delta \iff \mathsf{x}\mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} \iff \mathsf{x} = \mathsf{y}.$$

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{x} = \alpha^{y}$$
 for any $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \iff x = y$.

Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geqslant \log_{|\Omega|} |G|$.

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{x} = \alpha^{y}$$
 for any $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \iff x = y$.

Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geqslant \log_{|\Omega|} |G|$.

Write
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$.

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{x} = \alpha^{y}$$
 for any $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \iff x = y$.

Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geqslant \log_{|\Omega|} |G|$.

Write
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then

$$G > G^{(1)} > G^{(2)} > \cdots > G^{(b(G))} = 1.$$

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{x} = \alpha^{y} \text{ for any } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \iff x = y.$$

Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geqslant \log_{|\Omega|} |G|$.

Write
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then

$$G > G^{(1)} > G^{(2)} > \cdots > G^{(b(G))} = 1.$$

Hence, $|G| \ge 2^{b(G)}$ and so $b(G) \le \log_2 |G|$.

Let $c \ge 2$ be an integer and let

$$Q(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : G_{\alpha_1} \cap \cdots \cap G_{\alpha_c} \neq 1\}|}{|\Omega|^c}$$

be the probability that a random c-tuple of Ω is NOT a base for G.

Let $c \ge 2$ be an integer and let

$$Q(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : G_{\alpha_1} \cap \cdots \cap G_{\alpha_c} \neq 1\}|}{|\Omega|^c}$$

be the probability that a random c-tuple of Ω is NOT a base for G.

Notes.

• $Q(G,c) < 1 \iff b(G) \leqslant c$.

Let $c \ge 2$ be an integer and let

$$Q(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : G_{\alpha_1} \cap \cdots \cap G_{\alpha_c} \neq 1\}|}{|\Omega|^c}$$

be the probability that a random c-tuple of Ω is NOT a base for G.

Notes.

- $Q(G,c) < 1 \iff b(G) \leqslant c$.
- $(\alpha_1, \ldots, \alpha_c)$ is not a base $\iff \exists x \in G_{\alpha_1} \cap \cdots \cap G_{\alpha_c}$ of prime order.

Let $c \ge 2$ be an integer and let

$$Q(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : G_{\alpha_1} \cap \cdots \cap G_{\alpha_c} \neq 1\}|}{|\Omega|^c}$$

be the probability that a random c-tuple of Ω is NOT a base for G.

Notes.

- $Q(G,c) < 1 \iff b(G) \leqslant c$.
- $(\alpha_1, \dots, \alpha_c)$ is not a base $\iff \exists \ x \in G_{\alpha_1} \cap \dots \cap G_{\alpha_c}$ of prime order.
- For $x \in G$, the probability that a random c-tuple of Ω is fixed by x is $fpr(x)^c$, where fpr(x) is the **fixed point ratio** of x on Ω .

Let $c \ge 2$ be an integer and let

$$Q(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : G_{\alpha_1} \cap \cdots \cap G_{\alpha_c} \neq 1\}|}{|\Omega|^c}$$

be the probability that a random c-tuple of Ω is NOT a base for G.

Notes.

- $Q(G,c) < 1 \iff b(G) \leqslant c$.
- $(\alpha_1, \dots, \alpha_c)$ is not a base $\iff \exists \ x \in G_{\alpha_1} \cap \dots \cap G_{\alpha_c}$ of prime order.
- For $x \in G$, the probability that a random c-tuple of Ω is fixed by x is $fpr(x)^c$, where fpr(x) is the **fixed point ratio** of x on Ω .
- fpr(x) = $\frac{|x^G \cap G_\alpha|}{|x^G|}$ if G is transitive.

Let $c \ge 2$ be an integer and let

$$Q(G,c) = \frac{|\{(\alpha_1,\ldots,\alpha_c) \in \Omega^c : G_{\alpha_1} \cap \cdots \cap G_{\alpha_c} \neq 1\}|}{|\Omega|^c}$$

be the probability that a random c-tuple of Ω is NOT a base for G.

Notes.

- $Q(G,c) < 1 \iff b(G) \leqslant c$.
- $(\alpha_1, \dots, \alpha_c)$ is not a base $\iff \exists \ x \in G_{\alpha_1} \cap \dots \cap G_{\alpha_c}$ of prime order.
- For $x \in G$, the probability that a random c-tuple of Ω is fixed by x is $\operatorname{fpr}(x)^c$, where $\operatorname{fpr}(x)$ is the **fixed point ratio** of x on Ω .
- fpr(x) = $\frac{|x^G \cap G_\alpha|}{|x^G|}$ if G is transitive.

Therefore, if G is transitive, then

$$Q(G,c) \leqslant \sum_{x \in \mathcal{P}} \mathsf{fpr}(x)^c = \sum_{x \in \mathcal{P}} \frac{|x^G \cap G_{\alpha}|^c}{|x^G|^c},$$

where \mathcal{P} is the set of prime order elements in G.

Assume G is primitive.

Halasi, Liebeck & Maróti, 2019: $b(G) \leq 2 \log_{|\Omega|} |G| + 24$.

This establishes a strong form of Pyber's conjecture (1993).

Assume G is primitive.

Halasi, Liebeck & Maróti, 2019: $b(G) \leq 2 \log_{|\Omega|} |G| + 24$.

This establishes a strong form of Pyber's conjecture (1993).

Some other bounds:

• Seress, 1996: $b(G) \leqslant 4$ if G is soluble.

Assume G is primitive.

Halasi, Liebeck & Maróti, 2019:
$$b(G) \le 2 \log_{|\Omega|} |G| + 24$$
.

This establishes a strong form of Pyber's conjecture (1993).

Some other bounds:

- Seress, 1996: $b(G) \leqslant 4$ if G is soluble.
- Burness, 2021: $b(G) \leq 5$ if G_{α} is soluble.

Assume G is primitive.

Halasi, Liebeck & Maróti, 2019:
$$b(G) \le 2 \log_{|\Omega|} |G| + 24$$
.

This establishes a strong form of Pyber's conjecture (1993).

Some other bounds:

- Seress, 1996: $b(G) \leqslant 4$ if G is soluble.
- Burness, 2021: $b(G) \leqslant 5$ if G_{α} is soluble.
- Burness et al., 2007-11: $b(G) \le 7$ if G is almost simple in a non-standard action (Cameron's conjecture).

Assume G is primitive.

Halasi, Liebeck & Maróti, 2019: $b(G) \le 2 \log_{|\Omega|} |G| + 24$.

This establishes a strong form of Pyber's conjecture (1993).

Some other bounds:

- Seress, 1996: $b(G) \leqslant 4$ if G is soluble.
- Burness, 2021: $b(G) \leq 5$ if G_{α} is soluble.
- Burness et al., 2007-11: $b(G) \le 7$ if G is almost simple in a non-standard action (Cameron's conjecture).

Problem. Determine b(G) for all primitive groups $G \leq \operatorname{Sym}(\Omega)$.

Example: Symmetric groups on subsets

Let $G = S_n$ and $\Omega = \{k$ -subsets of $[n]\}$, where 2k < n (so G is primitive).

Example: Symmetric groups on subsets

Let $G = S_n$ and $\Omega = \{k \text{-subsets of } [n]\}$, where 2k < n (so G is primitive).

Mecenero & Spiga, 2024:

 $b(G) = \text{smallest integer } \ell \text{ such that}$

$$\sum_{\substack{\pi = (1^{c_1}, \dots, n^{c_n}) \\ \pi = (1^{c_1}, \dots, n^{c_n})}} (-1)^{n - \sum_{i=1}^n c_i} \frac{n!}{\prod_{i=1}^n i^{c_i} c_i!} \left(\sum_{\substack{\eta \vdash k \\ \eta = (1^{b_1}, \dots, k^{b_k})}} \prod_{j=1}^k {c_j \choose b_j} \right)^{\ell} \neq 0.$$

del Valle & Roney-Dougal, 2024:

$$b(G) = \text{smallest integer } \ell \text{ such that } \exists \ r \leqslant \ell + 1 \text{ satisfying}$$

$$0 \leqslant \frac{1}{r} \left(\ell k - \sum_{i=1}^{r-1} i \binom{\ell}{i} \right) \leqslant \binom{\ell}{r}$$

and

nd
$$\sum_{i=0}^{r-1} \binom{\ell}{i} + \frac{1}{r} \left(\ell k - \sum_{i=1}^{r-1} i \binom{\ell}{i} \right) \geqslant n.$$

Let $G = \text{Hol}(T) = T : \text{Aut}(T) = T^2 . \text{Out}(T)$ be the **holomorph** of a non-abelian simple group T. Recall that $G \leq \text{Sym}(T)$ is primitive.

Let $G = \text{Hol}(T) = T : \text{Aut}(T) = T^2 . \text{Out}(T)$ be the **holomorph** of a non-abelian simple group T. Recall that $G \leq \text{Sym}(T)$ is primitive.

• 1-point stabiliser: $G_1 = Aut(T)$.

Let $G = \text{Hol}(T) = T : \text{Aut}(T) = T^2 . \text{Out}(T)$ be the **holomorph** of a non-abelian simple group T. Recall that $G \leq \text{Sym}(T)$ is primitive.

- 1-point stabiliser: $G_1 = Aut(T)$.
- 2-point stabiliser: $G_1 \cap G_x = C_{\operatorname{Aut}(T)}(x) \neq 1 \implies b(G) \geqslant 3$.

Let $G = \operatorname{Hol}(T) = T : \operatorname{Aut}(T) = T^2 . \operatorname{Out}(T)$ be the **holomorph** of a non-abelian simple group T. Recall that $G \leq \operatorname{Sym}(T)$ is primitive.

- 1-point stabiliser: $G_1 = Aut(T)$.
- 2-point stabiliser: $G_1 \cap G_x = C_{\operatorname{Aut}(T)}(x) \neq 1 \implies b(G) \geqslant 3$.

Steinberg, 1962 (+ CFSG):
$$\exists x, y \in T$$
 such that $T = \langle x, y \rangle$.

This shows that b(G) = 3.

Let $G = \text{Hol}(T) = T : \text{Aut}(T) = T^2 . \text{Out}(T)$ be the **holomorph** of a non-abelian simple group T. Recall that $G \leq \text{Sym}(T)$ is primitive.

- 1-point stabiliser: $G_1 = Aut(T)$.
- 2-point stabiliser: $G_1 \cap G_x = C_{\operatorname{Aut}(T)}(x) \neq 1 \implies b(G) \geqslant 3$.

Steinberg, 1962 (+ CFSG):
$$\exists x, y \in T$$
 such that $T = \langle x, y \rangle$.

This shows that b(G) = 3.

A (slight) generalisation. Now let $G = N_{Sym(T)}(Hol(T)) = Hol(T).2$.

Let $G = \text{Hol}(T) = T : \text{Aut}(T) = T^2 . \text{Out}(T)$ be the **holomorph** of a non-abelian simple group T. Recall that $G \leq \text{Sym}(T)$ is primitive.

- 1-point stabiliser: $G_1 = Aut(T)$.
- 2-point stabiliser: $G_1 \cap G_x = C_{\operatorname{Aut}(T)}(x) \neq 1 \implies b(G) \geqslant 3$.

Steinberg, 1962 (+ CFSG):
$$\exists x, y \in T$$
 such that $T = \langle x, y \rangle$.

This shows that b(G) = 3.

A (slight) generalisation. Now let
$$G = N_{Sym(T)}(Hol(T)) = Hol(T).2$$
.

Here $\{1, x, y\}$ is a base if $T = \langle x, y \rangle$ and $\nexists \alpha \in Aut(T)$ such that

$$(x,y)^{\alpha}=(x^{-1},y^{-1}).$$

Let $G = \text{Hol}(T) = T : \text{Aut}(T) = T^2 . \text{Out}(T)$ be the **holomorph** of a non-abelian simple group T. Recall that $G \leq \text{Sym}(T)$ is primitive.

- 1-point stabiliser: $G_1 = Aut(T)$.
- 2-point stabiliser: $G_1 \cap G_x = C_{Aut(T)}(x) \neq 1 \implies b(G) \geqslant 3$.

Steinberg, 1962 (+ CFSG): $\exists x, y \in T$ such that $T = \langle x, y \rangle$.

This shows that b(G) = 3.

A (slight) generalisation. Now let $G = N_{Sym(T)}(Hol(T)) = Hol(T).2$.

Here $\{1, x, y\}$ is a base if $T = \langle x, y \rangle$ and $\nexists \alpha \in Aut(T)$ such that

$$(x,y)^{\alpha}=(x^{-1},y^{-1}).$$

Lucchini & Spiga, 2023: Such a pair exists if and only if $T \neq PSL_2(q)$.

Let $G = \operatorname{Hol}(T) = T : \operatorname{Aut}(T) = T^2 . \operatorname{Out}(T)$ be the **holomorph** of a non-abelian simple group T. Recall that $G \leq \operatorname{Sym}(T)$ is primitive.

- 1-point stabiliser: $G_1 = Aut(T)$.
- 2-point stabiliser: $G_1 \cap G_x = C_{\operatorname{Aut}(T)}(x) \neq 1 \implies b(G) \geqslant 3$.

Steinberg, 1962 (+ CFSG):
$$\exists x, y \in T$$
 such that $T = \langle x, y \rangle$.

This shows that b(G) = 3.

A (slight) generalisation. Now let
$$G = N_{Sym(T)}(Hol(T)) = Hol(T).2$$
.

Here $\{1, x, y\}$ is a base if $T = \langle x, y \rangle$ and $\nexists \alpha \in Aut(T)$ such that

$$(x,y)^{\alpha}=(x^{-1},y^{-1}).$$

Lucchini & Spiga, 2023: Such a pair exists if and only if $T \neq PSL_2(q)$.

H, 2024: $b(G) \in \{3,4\}$, with b(G) = 4 if and only if $T \in \{A_5, A_6\}$.

Write $D = \{(t, \ldots, t) : t \in T\} \leqslant T^k$,

Write $D = \{(t, ..., t) : t \in T\} \leqslant T^k$, so $T^k \leqslant \operatorname{Sym}(\Omega)$ with $\Omega = T^k/D$.

Write $D = \{(t, \ldots, t) : t \in T\} \leqslant T^k$, so $T^k \leqslant \operatorname{Sym}(\Omega)$ with $\Omega = T^k/D$.

Diagonal type group: A group $G \leq \text{Sym}(\Omega)$ with

$$T^k \triangleleft G \leqslant N_{\mathsf{Sym}(\Omega)}(T^k) \cong T^k.(\mathsf{Out}(T) \times S_k).$$

Write $D = \{(t, ..., t) : t \in T\} \leqslant T^k$, so $T^k \leqslant \operatorname{Sym}(\Omega)$ with $\Omega = T^k/D$.

Diagonal type group: A group $G \leq \text{Sym}(\Omega)$ with

$$T^k \triangleleft G \leqslant N_{\mathsf{Sym}(\Omega)}(T^k) \cong T^k.(\mathsf{Out}(T) \times S_k).$$

Notes.

• G induces a subgroup $P \leqslant S_k$ on [k].

Write $D = \{(t, ..., t) : t \in T\} \leqslant T^k$, so $T^k \leqslant \operatorname{Sym}(\Omega)$ with $\Omega = T^k/D$.

Diagonal type group: A group $G \leq Sym(\Omega)$ with

$$T^k \triangleleft G \leqslant N_{\mathsf{Sym}(\Omega)}(T^k) \cong T^k.(\mathsf{Out}(T) \times S_k).$$

Notes.

- *G* induces a subgroup $P \leqslant S_k$ on [k].
- G is primitive \iff P is primitive, or k=2 and P=1 (holomorph).

Write
$$D = \{(t, ..., t) : t \in T\} \leqslant T^k$$
, so $T^k \leqslant \operatorname{Sym}(\Omega)$ with $\Omega = T^k/D$.

Diagonal type group: A group $G \leq Sym(\Omega)$ with

$$T^k \triangleleft G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$$

Notes.

- G induces a subgroup $P \leqslant S_k$ on [k].
- G is primitive \iff P is primitive, or k=2 and P=1 (holomorph).

Fawcett, 2013: b(G) = 2 if $P \notin \{A_k, S_k\}$.

Write
$$D = \{(t, ..., t) : t \in T\} \leqslant T^k$$
, so $T^k \leqslant \operatorname{Sym}(\Omega)$ with $\Omega = T^k/D$.

Diagonal type group: A group $G \leq Sym(\Omega)$ with

$$T^k \leqslant G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$$

Notes.

- G induces a subgroup $P \leqslant S_k$ on [k].
- G is primitive \iff P is primitive, or k=2 and P=1 (holomorph).

Fawcett, 2013: b(G) = 2 if $P \notin \{A_k, S_k\}$.

This is (basically) based on Steinberg and

Cameron, Neumann & Saxl, 1984; Seress, 1997: With 43 exceptions, if $P \notin \{A_k, S_k\}$ then $\exists \ \Delta \subseteq [k]$ with setwise stabiliser $P_{\{\Delta\}} = 1$.

Let $G \leq T^k$.(Out(T) \times S_k) be a diagonal type primitive group.

For $S \subseteq T$, write Hol(T, S) for its setwise stabiliser in Hol(T).

Let $G \leq T^k$.(Out(T) $\times S_k$) be a diagonal type primitive group.

For $S \subseteq T$, write Hol(T, S) for its setwise stabiliser in Hol(T).

Key observation (H, 2024). b(G) = 2 if

 $\exists \ S \subseteq T \text{ with } |S| = k \text{ and } \operatorname{Hol}(T, S) = 1.$

Let $G \leq T^k$.(Out(T) $\times S_k$) be a diagonal type primitive group.

For $S \subseteq T$, write Hol(T, S) for its setwise stabiliser in Hol(T).

Key observation (H, 2024).
$$b(G) = 2$$
 if

$$\exists \ S \subseteq T \ \text{with} \ |S| = k \ \text{and} \ \text{Hol}(T,S) = 1.$$

Remark. For $G = T^k.(\operatorname{Out}(T) \times S_k)$, this is an "if and only if".

Let $G \leq T^k$.(Out(T) \times S_k) be a diagonal type primitive group.

For $S \subseteq T$, write Hol(T, S) for its setwise stabiliser in Hol(T).

Key observation (H, 2024).
$$b(G) = 2$$
 if

$$\exists \ S \subseteq T \ \text{with} \ |S| = k \ \text{and} \ \text{Hol}(T,S) = 1.$$

Remark. For $G = T^k.(\operatorname{Out}(T) \times S_k)$, this is an "if and only if".

Example

For "most" T, there exist $x,y\in T$ such that |x|=2, |y|=3 and $T=\langle x,y\rangle$. Then take $S=\{1,x,y\}$.

Let $G \leq T^k$.(Out(T) $\times S_k$) be a diagonal type primitive group.

For $S \subseteq T$, write Hol(T, S) for its setwise stabiliser in Hol(T).

Key observation (H, 2024).
$$b(G) = 2$$
 if

$$\exists \ S \subseteq T \ \text{with} \ |S| = k \ \text{and} \ \text{Hol}(T,S) = 1.$$

Remark. For $G = T^k.(\operatorname{Out}(T) \times S_k)$, this is an "if and only if".

Example

For "most" T, there exist $x, y \in T$ such that |x| = 2, |y| = 3 and $T = \langle x, y \rangle$. Then take $S = \{1, x, y\}$.

General case: Give a "nice" upper bound on the probability that a random k-subset S satisfies $Hol(T, S) \neq 1$ (if the bound is < 1 then we are happy).

Key observation (H, 2024).
$$b(G) = 2$$
 if

$$\exists \ S \subseteq T \ \text{with} \ |S| = k \ \text{and} \ \text{Hol}(T,S) = 1.$$

Key observation (H, 2024).
$$b(G) = 2$$
 if

$$\exists \ S \subseteq T \ \text{with} \ |S| = k \ \text{and} \ \text{Hol}(T,S) = 1.$$

Note. (\diamond) holds only if $3 \leqslant k \leqslant |T| - 3$ since b(Hol(T)) = 3.

Key observation (H, 2024).
$$b(G) = 2$$
 if

$$\exists S \subseteq T \text{ with } |S| = k \text{ and } \mathsf{Hol}(T,S) = 1.$$

Note. (\diamond) holds only if $3 \leqslant k \leqslant |T| - 3$ since b(Hol(T)) = 3.

Theorem (H, 2024)

For $3 \leqslant k \leqslant |T| - 3$, property (\diamond) holds.

Key observation (H, 2024).
$$b(G) = 2$$
 if

$$\exists \ S \subseteq T \text{ with } |S| = k \text{ and } \operatorname{Hol}(T, S) = 1.$$
 (4)

Note. (\diamond) holds only if $3 \le k \le |T| - 3$ since b(Hol(T)) = 3.

Theorem (H, 2024)

For $3 \leqslant k \leqslant |T| - 3$, property (\diamond) holds.

Heavily based on this, and built on Fawcett...

Theorem (H, 2024). The exact base size for every **diagonal type** primitive group is determined.

Thank you!