Bases for permutation groups

Hong Yi Huang

4th International Conference on Groups, Graphs and Combinatorics
SUSTech, Shenzhen, China

11 November 2023
道 2 University of

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$
G_{\alpha}=\left\{g \in G \mid \alpha^{g}=\alpha\right\}
$$

the stabiliser of α in G.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$
G_{\alpha}=\left\{g \in G \mid \alpha^{g}=\alpha\right\}
$$

the stabiliser of α in G. Then

$$
\bigcap_{\alpha \in \Omega} G_{\alpha}=1
$$

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$
G_{\alpha}=\left\{g \in G \mid \alpha^{g}=\alpha\right\}
$$

the stabiliser of α in G. Then

$$
\bigcap_{\alpha \in \Omega} G_{\alpha}=1
$$

Base: A subset $\Delta \subseteq \Omega$ such that

$$
\bigcap_{\alpha \in \Delta} G_{\alpha}=1
$$

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$
G_{\alpha}=\left\{g \in G \mid \alpha^{g}=\alpha\right\}
$$

the stabiliser of α in G. Then

$$
\bigcap_{\alpha \in \Omega} G_{\alpha}=1
$$

Base: A subset $\Delta \subseteq \Omega$ such that

$$
\bigcap_{\alpha \in \Delta} G_{\alpha}=1
$$

Base size $b(G)$: the minimal size of a base for G.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$
G_{\alpha}=\left\{g \in G \mid \alpha^{g}=\alpha\right\}
$$

the stabiliser of α in G. Then

$$
\bigcap_{\alpha \in \Omega} G_{\alpha}=1
$$

Base: A subset $\Delta \subseteq \Omega$ such that

$$
\bigcap_{\alpha \in \Delta} G_{\alpha}=1
$$

Base size $b(G)$: the minimal size of a base for G.
Remark. The determining number of a graph Γ is $b(\operatorname{Aut}(\Gamma))$.

First examples

$$
G=S_{n}, \Omega=\{1, \ldots, n\}:
$$

- $\Delta=\{1, \ldots, n-1\}$ is a base

First examples

$$
G=S_{n}, \Omega=\{1, \ldots, n\}:
$$

- $\Delta=\{1, \ldots, n-1\}$ is a base
- $b(G)=n-1$.

First examples

$$
G=S_{n}, \Omega=\{1, \ldots, n\}:
$$

- $\Delta=\{1, \ldots, n-1\}$ is a base
- $b(G)=n-1$.
$G=D_{2 n}, \Omega=\{1, \ldots, n\}$ is an n-gon:
- Any pair of adjacent vertices in the n-gon is a base

First examples

$G=S_{n}, \Omega=\{1, \ldots, n\}:$

- $\Delta=\{1, \ldots, n-1\}$ is a base
- $b(G)=n-1$.
$G=D_{2 n}, \Omega=\{1, \ldots, n\}$ is an n-gon:
- Any pair of adjacent vertices in the n-gon is a base
- $b(G)=2$.

First examples

$G=S_{n}, \Omega=\{1, \ldots, n\}:$

- $\Delta=\{1, \ldots, n-1\}$ is a base
- $b(G)=n-1$.
$G=D_{2 n}, \Omega=\{1, \ldots, n\}$ is an n-gon:
- Any pair of adjacent vertices in the n-gon is a base
- $b(G)=2$.
$G=G L(V), \Omega=V \backslash\{0\}:$
- $\Delta \subseteq \Omega$ is a base if and only if it contains a basis of V

First examples

$G=S_{n}, \Omega=\{1, \ldots, n\}:$

- $\Delta=\{1, \ldots, n-1\}$ is a base
- $b(G)=n-1$.
$G=D_{2 n}, \Omega=\{1, \ldots, n\}$ is an n-gon:
- Any pair of adjacent vertices in the n-gon is a base
- $b(G)=2$.
$G=G L(V), \Omega=V \backslash\{0\}:$
- $\Delta \subseteq \Omega$ is a base if and only if it contains a basis of V
- $b(G)=\operatorname{dim} V$.

A non-trivial example

Let $G=S_{n}$ and $\Omega=\{k$-subsets of $\{1, \ldots, n\}\}$, where $2 k \leqslant n$.

A non-trivial example

Let $G=S_{n}$ and $\Omega=\{k$-subsets of $\{1, \ldots, n\}\}$, where $2 k \leqslant n$.
Note. $\{\{1, \ldots, k\},\{2, \ldots, k+1\}, \ldots,\{n-k+1, \ldots, n\}\}$ is a base.

A non-trivial example

Let $G=S_{n}$ and $\Omega=\{k$-subsets of $\{1, \ldots, n\}\}$, where $2 k \leqslant n$.
Note. $\{\{1, \ldots, k\},\{2, \ldots, k+1\}, \ldots,\{n-k+1, \ldots, n\}\}$ is a base.
Mecenero \& Spiga, 04/08/23; del Valle \& Roney-Dougal, 08/08/23:
$b(G)=$ smallest integer ℓ such that

$$
\sum_{\substack{\pi \vdash n \\ \pi=\left(1^{\left.c_{1}, \ldots, n^{c_{n}}\right)}\right.}}(-1)^{n-\sum_{i=1}^{n} c_{i}} \frac{n!}{\prod_{i=1}^{n} i c_{i} c_{i}!}\left(\sum_{\substack{\eta \vdash k \\ \eta=\left(1^{b_{1}}, \ldots, k^{b_{k}}\right)}} \prod_{j=1}^{k}\binom{c_{j}}{b_{j}}\right)^{\ell} \neq 0 .
$$

A non-trivial example

Let $G=S_{n}$ and $\Omega=\{k$-subsets of $\{1, \ldots, n\}\}$, where $2 k \leqslant n$.
Note. $\{\{1, \ldots, k\},\{2, \ldots, k+1\}, \ldots,\{n-k+1, \ldots, n\}\}$ is a base.
Mecenero \& Spiga, 04/08/23; del Valle \& Roney-Dougal, 08/08/23:
$b(G)=$ smallest integer ℓ such that

$$
\sum_{\substack{\pi \vdash n \\ \pi=\left(1^{\left.c_{1}, \ldots, n^{c_{n}}\right)}\right.}}(-1)^{n-\sum_{i=1}^{n} c_{i}} \frac{n!}{\prod_{i=1}^{n} i c_{i} c_{i}!}\left(\sum_{\substack{\eta \vdash k \\ \eta=\left(1^{b_{1}}, \ldots, k^{b_{k}}\right)}} \prod_{j=1}^{k}\binom{c_{j}}{b_{j}}\right)^{\ell} \neq 0 .
$$

In general, determining $b(G)$ is a very difficult problem!

Bounds

Let Δ be a base of size $b(G)$ and let $x, y \in G$. Then

$$
\alpha^{x}=\alpha^{y} \text { for any } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \Longleftrightarrow x=y .
$$

Bounds

Let Δ be a base of size $b(G)$ and let $x, y \in G$. Then

$$
\alpha^{x}=\alpha^{y} \text { for any } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \Longleftrightarrow x=y
$$

That is, elements of G is one-to-one to the pointwise images of Δ.

Bounds

Let Δ be a base of size $b(G)$ and let $x, y \in G$. Then

$$
\alpha^{x}=\alpha^{y} \text { for any } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \Longleftrightarrow x=y
$$

That is, elements of G is one-to-one to the pointwise images of Δ.
Thus, we have $|G| \leqslant|\Omega|^{b(G)}$, so $b(G) \geqslant \log _{|\Omega|}|G|$.

Bounds

Let Δ be a base of size $b(G)$ and let $x, y \in G$. Then

$$
\alpha^{x}=\alpha^{y} \text { for any } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \Longleftrightarrow x=y
$$

That is, elements of G is one-to-one to the pointwise images of Δ.
Thus, we have $|G| \leqslant|\Omega|^{b(G)}$, so $b(G) \geqslant \log _{|\Omega|}|G|$.
Write $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{b(G)}\right\}$ and $G^{(k)}=\bigcap_{i=1}^{k} G_{\alpha_{i}}$.

Bounds

Let Δ be a base of size $b(G)$ and let $x, y \in G$. Then

$$
\alpha^{x}=\alpha^{y} \text { for any } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \Longleftrightarrow x=y
$$

That is, elements of G is one-to-one to the pointwise images of Δ.
Thus, we have $|G| \leqslant|\Omega|^{b(G)}$, so $b(G) \geqslant \log _{|\Omega|}|G|$.
Write $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{b(G)}\right\}$ and $G^{(k)}=\bigcap_{i=1}^{k} G_{\alpha_{i}}$. Then

$$
G>G^{(1)}>G^{(2)}>\cdots>G^{(b(G))}=1 .
$$

Bounds

Let Δ be a base of size $b(G)$ and let $x, y \in G$. Then

$$
\alpha^{x}=\alpha^{y} \text { for any } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \Longleftrightarrow x=y
$$

That is, elements of G is one-to-one to the pointwise images of Δ.
Thus, we have $|G| \leqslant|\Omega|^{b(G)}$, so $b(G) \geqslant \log _{|\Omega|}|G|$.
Write $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{b(G)}\right\}$ and $G^{(k)}=\bigcap_{i=1}^{k} G_{\alpha_{i}}$. Then

$$
G>G^{(1)}>G^{(2)}>\cdots>G^{(b(G))}=1 .
$$

Hence, $|G| \geqslant 2^{b(G)}$ and so $b(G) \leqslant \log _{2}|G|$.

Bounds

Let Δ be a base of size $b(G)$ and let $x, y \in G$. Then

$$
\alpha^{x}=\alpha^{y} \text { for any } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \Longleftrightarrow x=y
$$

That is, elements of G is one-to-one to the pointwise images of Δ.
Thus, we have $|G| \leqslant|\Omega|^{b(G)}$, so $b(G) \geqslant \log _{|\Omega|}|G|$.
Write $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{b(G)}\right\}$ and $G^{(k)}=\bigcap_{i=1}^{k} G_{\alpha_{i}}$. Then

$$
G>G^{(1)}>G^{(2)}>\cdots>G^{(b(G))}=1 .
$$

Hence, $|G| \geqslant 2^{b(G)}$ and so $b(G) \leqslant \log _{2}|G|$.
Primitive group: G_{α} is a maximal subgroup of G.

Bounds

Let Δ be a base of size $b(G)$ and let $x, y \in G$. Then

$$
\alpha^{x}=\alpha^{y} \text { for any } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \Longleftrightarrow x=y
$$

That is, elements of G is one-to-one to the pointwise images of Δ.
Thus, we have $|G| \leqslant|\Omega|^{b(G)}$, so $b(G) \geqslant \log _{|\Omega|}|G|$.
Write $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{b(G)}\right\}$ and $G^{(k)}=\bigcap_{i=1}^{k} G_{\alpha_{i}}$. Then

$$
G>G^{(1)}>G^{(2)}>\cdots>G^{(b(G))}=1 .
$$

Hence, $|G| \geqslant 2^{b(G)}$ and so $b(G) \leqslant \log _{2}|G|$.
Primitive group: G_{α} is a maximal subgroup of G.
Halasi, Liebeck \& Maróti, 2019:

$$
G \text { primitive } \Longrightarrow b(G) \leqslant 2 \log _{|\Omega|}|G|+24
$$

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple (ask Eamonn).

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple (ask Eamonn).

Almost simple: $\operatorname{soc}(G)$ is non-abelian simple.

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple (ask Eamonn).

Almost simple: $\operatorname{soc}(G)$ is non-abelian simple.

- $\operatorname{soc}(G)=A_{n}$ or sporadic \checkmark

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple (ask Eamonn).

Almost simple: $\operatorname{soc}(G)$ is non-abelian simple.

- $\operatorname{soc}(G)=A_{n}$ or sporadic \checkmark
- Burness, Liebeck \& Shalev, 2007: $b(G) \leqslant 6$ if G is Lie type and non-standard

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple (ask Eamonn).

Almost simple: $\operatorname{soc}(G)$ is non-abelian simple.

- $\operatorname{soc}(G)=A_{n}$ or sporadic \checkmark
- Burness, Liebeck \& Shalev, 2007: $b(G) \leqslant 6$ if G is Lie type and non-standard

Twisted wreath product: $G=T^{k}: P$ for some transitive $P \leqslant S_{k}$.

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple (ask Eamonn).

Almost simple: $\operatorname{soc}(G)$ is non-abelian simple.

- $\operatorname{soc}(G)=A_{n}$ or sporadic \checkmark
- Burness, Liebeck \& Shalev, 2007: $b(G) \leqslant 6$ if G is Lie type and non-standard

Twisted wreath product: $G=T^{k}: P$ for some transitive $P \leqslant S_{k}$.

- Fawcett, 2022: P is quasiprimitive $\Longrightarrow b(G)=2$.

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple (ask Eamonn).

Almost simple: $\operatorname{soc}(G)$ is non-abelian simple.

- $\operatorname{soc}(G)=A_{n}$ or sporadic \checkmark
- Burness, Liebeck \& Shalev, 2007: $b(G) \leqslant 6$ if G is Lie type and non-standard

Twisted wreath product: $G=T^{k}: P$ for some transitive $P \leqslant S_{k}$.

- Fawcett, 2022: P is quasiprimitive $\Longrightarrow b(G)=2$.
- Fawcett, 2022: $b(G) \leqslant\left\lceil\log _{|\Omega|}|G|\right\rceil+2$.

Base sizes of primitive groups

The O'Nan-Scott theorem divides finite primitive groups into 5 types.
Affine: $G=V H \leqslant A G L(V)$, where $V=\mathbb{F}_{p}^{d}$ and $H \leqslant G L(V)$ is irreducible.

- Partial work on the case where $H / Z(H)$ is simple (ask Eamonn).

Almost simple: $\operatorname{soc}(G)$ is non-abelian simple.

- $\operatorname{soc}(G)=A_{n}$ or sporadic \checkmark
- Burness, Liebeck \& Shalev, 2007: $b(G) \leqslant 6$ if G is Lie type and non-standard

Twisted wreath product: $G=T^{k}: P$ for some transitive $P \leqslant S_{k}$.

- Fawcett, 2022: P is quasiprimitive $\Longrightarrow b(G)=2$.
- Fawcett, 2022: $b(G) \leqslant\left\lceil\log _{|\Omega|}|G|\right\rceil+2$.

Product type: Partial results (Burness \& H, 2023)

Diagonal type

Let T be a non-abelian finite simple group.
Write $D=\{(t, \ldots, t): t \in T\} \leqslant T^{k}$,

Diagonal type

Let T be a non-abelian finite simple group.
Write $D=\{(t, \ldots, t): t \in T\} \leqslant T^{k}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$ with $\Omega=\left[T^{k}: D\right]$.

Diagonal type

Let T be a non-abelian finite simple group.
Write $D=\{(t, \ldots, t): t \in T\} \leqslant T^{k}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$ with $\Omega=\left[T^{k}: D\right]$.
Diagonal type group: A group G with

$$
T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right) \cong T^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right)
$$

Diagonal type

Let T be a non-abelian finite simple group.
Write $D=\{(t, \ldots, t): t \in T\} \leqslant T^{k}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$ with $\Omega=\left[T^{k}: D\right]$.
Diagonal type group: A group G with

$$
T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right) \cong T^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right)
$$

Note.

- G induces a subgroup $P \leqslant S_{k}$ on [k].

Diagonal type

Let T be a non-abelian finite simple group.
Write $D=\{(t, \ldots, t): t \in T\} \leqslant T^{k}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$ with $\Omega=\left[T^{k}: D\right]$.
Diagonal type group: A group G with

$$
T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right) \cong T^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right)
$$

Note.

- G induces a subgroup $P \leqslant S_{k}$ on [k].
- G is primitive $\Longleftrightarrow P$ is primitive, or $k=2$ and $P=1$.

Diagonal type

Let T be a non-abelian finite simple group.
Write $D=\{(t, \ldots, t): t \in T\} \leqslant T^{k}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$ with $\Omega=\left[T^{k}: D\right]$.
Diagonal type group: A group G with

$$
T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right) \cong T^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right)
$$

Note.

- G induces a subgroup $P \leqslant S_{k}$ on [k].
- G is primitive $\Longleftrightarrow P$ is primitive, or $k=2$ and $P=1$.
- $T^{k} \leqslant G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P)$.

Diagonal type

Let T be a non-abelian finite simple group.
Write $D=\{(t, \ldots, t): t \in T\} \leqslant T^{k}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$ with $\Omega=\left[T^{k}: D\right]$.
Diagonal type group: A group G with

$$
T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right) \cong T^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right)
$$

Note.

- G induces a subgroup $P \leqslant S_{k}$ on [k].
- G is primitive $\Longleftrightarrow P$ is primitive, or $k=2$ and $P=1$.
- $T^{k} \leqslant G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P)$.

Fawcett, 2013: $b(G)=2$ if $P \notin\left\{A_{k}, S_{k}\right\}$.

Diagonal type

Let T be a non-abelian finite simple group.
Write $D=\{(t, \ldots, t): t \in T\} \leqslant T^{k}$, so $T^{k} \leqslant \operatorname{Sym}(\Omega)$ with $\Omega=\left[T^{k}: D\right]$.
Diagonal type group: A group G with

$$
T^{k} \preccurlyeq G \leqslant N_{\operatorname{Sym}(\Omega)}\left(T^{k}\right) \cong T^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right)
$$

Note.

- G induces a subgroup $P \leqslant S_{k}$ on [k].
- G is primitive $\Longleftrightarrow P$ is primitive, or $k=2$ and $P=1$.
- $T^{k} \leqslant G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P)$.

Fawcett, 2013: $b(G)=2$ if $P \notin\left\{A_{k}, S_{k}\right\}$.
Fawcett, 2013: If $P \in\left\{A_{k}, S_{k}\right\}$ and $b(G)=2$, then $2<k<|T|$.

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.
Key observation:

$$
b(G)=2 \text { if } \exists S \subseteq T \text { such that }|S|=k \text { and } Y_{\{S\}}=1
$$

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.
Key observation:

$$
b(G)=2 \text { if } \exists S \subseteq T \text { such that }|S|=k \text { and } Y_{\{S\}}=1
$$

An approach:
Let $\mathcal{A}=\left\{S \subseteq T:|S|=k\right.$ and $\left.Y_{\{S\}} \neq 1\right\}$

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.
Key observation:

$$
b(G)=2 \text { if } \exists S \subseteq T \text { such that }|S|=k \text { and } Y_{\{S\}}=1
$$

An approach:
Let $\mathcal{A}=\left\{S \subseteq T:|S|=k\right.$ and $\left.Y_{\{S\}} \neq 1\right\}$ and suppose $S \in \mathcal{A}$.

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.
Key observation:

$$
b(G)=2 \text { if } \exists S \subseteq T \text { such that }|S|=k \text { and } Y_{\{S\}}=1
$$

An approach:
Let $\mathcal{A}=\left\{S \subseteq T:|S|=k\right.$ and $\left.Y_{\{S\}} \neq 1\right\}$ and suppose $S \in \mathcal{A}$.
Then $\exists \sigma \in Y_{\{S\}}$ of prime order,

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.
Key observation:

$$
b(G)=2 \text { if } \exists S \subseteq T \text { such that }|S|=k \text { and } Y_{\{S\}}=1
$$

An approach:
Let $\mathcal{A}=\left\{S \subseteq T:|S|=k\right.$ and $\left.Y_{\{S\}} \neq 1\right\}$ and suppose $S \in \mathcal{A}$.
Then $\exists \sigma \in Y_{\{S\}}$ of prime order, so

$$
S \in \operatorname{fix}(\sigma, k)=\left\{S \subseteq T:|S|=k \text { and } \sigma \in Y_{\{S\}}\right\}
$$

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.
Key observation:

$$
b(G)=2 \text { if } \exists S \subseteq T \text { such that }|S|=k \text { and } Y_{\{S\}}=1
$$

An approach:
Let $\mathcal{A}=\left\{S \subseteq T:|S|=k\right.$ and $\left.Y_{\{S\}} \neq 1\right\}$ and suppose $S \in \mathcal{A}$.
Then $\exists \sigma \in Y_{\{S\}}$ of prime order, so

$$
S \in \operatorname{fix}(\sigma, k)=\left\{S \subseteq T:|S|=k \text { and } \sigma \in Y_{\{S\}}\right\}
$$

Let \mathcal{P} be the set of elements of Y of prime order. Then we have

$$
|\mathcal{A}|=\left|\bigcup_{\sigma \in \mathcal{P}} \operatorname{fix}(\sigma, k)\right|
$$

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.
Key observation:

$$
b(G)=2 \text { if } \exists S \subseteq T \text { such that }|S|=k \text { and } Y_{\{S\}}=1
$$

An approach:
Let $\mathcal{A}=\left\{S \subseteq T:|S|=k\right.$ and $\left.Y_{\{S\}} \neq 1\right\}$ and suppose $S \in \mathcal{A}$.
Then $\exists \sigma \in Y_{\{S\}}$ of prime order, so

$$
S \in \operatorname{fix}(\sigma, k)=\left\{S \subseteq T:|S|=k \text { and } \sigma \in Y_{\{S\}}\right\}
$$

Let \mathcal{P} be the set of elements of Y of prime order. Then we have

$$
|\mathcal{A}|=\left|\bigcup_{\sigma \in \mathcal{P}} \operatorname{fix}(\sigma, k)\right| \leqslant \sum_{\sigma \in \mathcal{P}}|\operatorname{fix}(\sigma, k)|=m .
$$

Holomorph

Let $Y=\operatorname{Hol}(T)=T: \operatorname{Aut}(T) \leqslant \operatorname{Sym}(T)$ be the holomorph of T.
Key observation:

$$
b(G)=2 \text { if } \exists S \subseteq T \text { such that }|S|=k \text { and } Y_{\{S\}}=1
$$

An approach:
Let $\mathcal{A}=\left\{S \subseteq T:|S|=k\right.$ and $\left.Y_{\{S\}} \neq 1\right\}$ and suppose $S \in \mathcal{A}$.
Then $\exists \sigma \in Y_{\{S\}}$ of prime order, so

$$
S \in \operatorname{fix}(\sigma, k)=\left\{S \subseteq T:|S|=k \text { and } \sigma \in Y_{\{S\}}\right\}
$$

Let \mathcal{P} be the set of elements of Y of prime order. Then we have

$$
|\mathcal{A}|=\left|\bigcup_{\sigma \in \mathcal{P}} \operatorname{fix}(\sigma, k)\right| \leqslant \sum_{\sigma \in \mathcal{P}}|\operatorname{fix}(\sigma, k)|=m .
$$

Note. $b(G)=2$ if $m<\binom{|T|}{k}$.

Main results

Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists S \subseteq T$ such that $|S|=k$ and $Y_{\{S\}}=1$.

Main results

Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists S \subseteq T$ such that $|S|=k$ and $Y_{\{S\}}=1$.

Theorem (H, 2023+)

Suppose $G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P)$ is a diagonal type primitive group with top group P. Then $b(G)=2$ if and only if one of the following holds:

- $P \notin\left\{A_{k}, S_{k}\right\} ;$
- $3 \leqslant k \leqslant|T|-3$;
- $k \in\{|T|-2,|T|-1\}$ and $S_{k} \nless G$.

Main results

Theorem (H, 2023+)
If $3 \leqslant k \leqslant|T|-3$, then $\exists S \subseteq T$ such that $|S|=k$ and $Y_{\{S\}}=1$.

Theorem (H, 2023+)

Suppose $G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P)$ is a diagonal type primitive group with top group P. Then $b(G)=2$ if and only if one of the following holds:

- $P \notin\left\{A_{k}, S_{k}\right\}$;
- $3 \leqslant k \leqslant|T|-3$;
- $k \in\{|T|-2,|T|-1\}$ and $S_{k} \nless G$.

Theorem (H, 2023+)

Suppose G is a diagonal type primitive group. Then $b(G)$ is computed.

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.
Let $r(G)$ be the number of regular orbits on $\Omega^{b(G)}($ so $r(G) \geqslant 1)$.

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.
Let $r(G)$ be the number of regular orbits on $\Omega^{b(G)}($ so $r(G) \geqslant 1)$.

Problem. Classify the transitive groups G with $r(G)=1$.

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.
Let $r(G)$ be the number of regular orbits on $\Omega^{b(G)}($ so $r(G) \geqslant 1)$.

Problem. Classify the transitive groups G with $r(G)=1$.

Remark. If $b(G)=2$, then
$r(G)=1 \Longleftrightarrow$ the Saxl graph of G is G-arc-transitive.

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.
Let $r(G)$ be the number of regular orbits on $\Omega^{b(G)}($ so $r(G) \geqslant 1)$.

Problem. Classify the transitive groups G with $r(G)=1$.

Remark. If $b(G)=2$, then
$r(G)=1 \Longleftrightarrow$ the Saxl graph of G is G-arc-transitive.
Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers.

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.
Let $r(G)$ be the number of regular orbits on $\Omega^{b(G)}($ so $r(G) \geqslant 1)$.

Problem. Classify the transitive groups G with $r(G)=1$.

Remark. If $b(G)=2$, then
$r(G)=1 \Longleftrightarrow$ the Saxl graph of G is G-arc-transitive.
Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers.
Burness, 2021: If $G \in \mathcal{B}$, then $b(G)$ is known, and $b(G) \leqslant 5$.

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.
Let $r(G)$ be the number of regular orbits on $\Omega^{b(G)}($ so $r(G) \geqslant 1)$.

Problem. Classify the transitive groups G with $r(G)=1$.

Remark. If $b(G)=2$, then
$r(G)=1 \Longleftrightarrow$ the Saxl graph of G is G-arc-transitive.
Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers.
Burness, 2021: If $G \in \mathcal{B}$, then $b(G)$ is known, and $b(G) \leqslant 5$.
Burness \& H, 2022/23: $G \in \mathcal{B}$ with $r(G)=1 \checkmark$

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.
Let $r(G)$ be the number of regular orbits on $\Omega^{b(G)}($ so $r(G) \geqslant 1)$.

Problem. Classify the transitive groups G with $r(G)=1$.

Remark. If $b(G)=2$, then
$r(G)=1 \Longleftrightarrow$ the Saxl graph of G is G-arc-transitive.
Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers.
Burness, 2021: If $G \in \mathcal{B}$, then $b(G)$ is known, and $b(G) \leqslant 5$.
Burness \& H, 2022/23: $G \in \mathcal{B}$ with $r(G)=1 \checkmark$
H, 2023+: G diagonal type primitive with $b(G)=2$ and $r(G)=1 \checkmark$

Regular orbits

Note. G has a regular orbit on $\Omega^{k} \Longleftrightarrow b(G) \leqslant k$.
Let $r(G)$ be the number of regular orbits on $\Omega^{b(G)}($ so $r(G) \geqslant 1)$.

Problem. Classify the transitive groups G with $r(G)=1$.

Remark. If $b(G)=2$, then

$$
r(G)=1 \Longleftrightarrow \text { the Saxl graph of } G \text { is } G \text {-arc-transitive. }
$$

Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers.
Burness, 2021: If $G \in \mathcal{B}$, then $b(G)$ is known, and $b(G) \leqslant 5$.
Burness \& H, 2022/23: $G \in \mathcal{B}$ with $r(G)=1 \checkmark$
H, 2023+: G diagonal type primitive with $b(G)=2$ and $r(G)=1 \checkmark$
Freedman, H, Lee \& Rekvényi, 2023+:
G is a diagonal type primitive group with $b(G)>2 \Longrightarrow r(G)>1$.

Thank you!

