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the stabiliser of o in G. Then
() Ga=1.
aEe
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Base size b(G): the minimal size of a base for G.

Remark. The determining number of a graph I is b(Aut(I')).
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G=S, Q={1,...,n}:
e A={1,...,n— 1} is a base
e b(G)=n-1.

G =Dy, Q={1,...,n} is an n-gon:
@ Any pair of adjacent vertices in the n-gon is a base

e b(G)=2.

G =GL(V), Q=V\{0}:
e A C Qs a base if and only if it contains a basis of V

e b(G)=dimV.
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A non-trivial example

Let G = S, and Q = {k-subsets of {1,...,n}}, where 2k < n.

Note. {{1,...,k},{2,...,k+1},....,{n—k+1,...,n}} is a base.
Mecenero & Spiga, 04/08/23; del Valle & Roney-Dougal, 08/08/23:
b(G) = smallest integer ¢ such that
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In general, determining b(G) is a very difficult problem!
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Bounds
Let A be a base of size b(G) and let x,y € G. Then

o =aforanyae A < xy e ﬂ Gy, < x=y.
acA

That is, elements of G is one-to-one to the pointwise images of A.
Thus, we have |G| < |Q[%(®), so b(G) > logo) |G-
Write A = {a1,...,apc)} and Gk = ﬂfle Gq,. Then
G>GM > @ ... 5 gl(6) — 1,
Hence, |G| > 2(%) and so b(G) < log, |G|.

Primitive group: G, is a maximal subgroup of G.

Halasi, Liebeck & Maréti, 2019:

G primitive = b(G) < 2log|q| |G| + 24.
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Base sizes of primitive groups
The O’Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: G = VH < AGL(V), where V = Fg and H < GL(V) is irreducible.

e Partial work on the case where H/Z(H) is simple (ask Eamonn).
Almost simple: soc(G) is non-abelian simple.

@ soc(G) = A, or sporadic v/

@ Burness, Liebeck & Shalev, 2007:

b(G) < 6 if G is Lie type and non-standard

Twisted wreath product: G = Tk:P for some transitive P < Sk.

e Fawcett, 2022: P is quasiprimitive = b(G) = 2.

o Fawcett, 2022: b(G) < [log|q| [G|] + 2.

Product type: Partial results (Burness & H, 2023)
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Diagonal type

Let T be a non-abelian finite simple group.
Write D = {(t,...,t): t € T} < T¥ so TX < Sym(Q) with Q = [T~ : D].
Diagonal type group: A group G with
T* 4G < Noym(a)(TH) = T*.(Out(T) x Sx).

Note.

e G induces a subgroup P < S on [].

@ G is primitive <= P is primitive, or k =2 and P = 1.

o T G < TK(Out(T) x P).
Fawcett, 2013: b(G) =2 if P ¢ {Ax, Sk}
Fawcett, 2013: If P € {Ak, Sk} and b(G) =2, then 2 < k < |T|.
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Holomorph
Let Y = Hol(T) = T:Aut(T) < Sym(T) be the holomorph of T.
Key observation:

b(G) =2if 35 C T such that |S| =k and Y5, = 1.
An approach:
Let A={S C T:|S|]=kand Y(sy # 1} and suppose S € A.
Then 3 0 € Y5y of prime order, so
Sefix(o, k) ={SCT:[S|=kand o€ Y5}

Let P be the set of elements of Y of prime order. Then we have

Al = [ fix(o, k)

oceP

< Z | fix(o, k)| = m.

oeP

Note. h(G) =2if m < (/).
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Main results

Theorem (H, 2023+)
If3< k< |T|—3, then 35S C T such that S| = k and Y(s; = 1.

Theorem (H, 2023+)
Suppose G < TX.(Out(T) x P) is a diagonal type primitive group with
top group P. Then b(G) = 2 if and only if one of the following holds:
o P ¢ {Ax Sk}
0 3< kLT -3
@ ke {|T|—2,|T| —1} and S, £ G.

Theorem (H, 2023+)

Suppose G is a diagonal type primitive group. Then b(G) is computed. v/

v
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Note. G has a regular orbit on QK <= b(G) < k.

Let r(G) be the number of regular orbits on Q%(¢) (so r(G) > 1).

Problem. Classify the transitive groups G with r(G) = 1.

Remark. If b(G) = 2, then
r(G) =1 <= the Saxl graph of G is G-arc-transitive.

Let BB be the set of almost simple primitive groups with soluble stabilisers.
Burness, 2021: If G € B, then b(G) is known, and b(G) < 5.
Burness & H, 2022/23: G € B with r(G) =1 v
H, 2023+: G diagonal type primitive with b(G) =2 and r(G) =1 v
Freedman, H, Lee & Rekvényi, 2023+:

G is a diagonal type primitive group with b(G) >2 = r(G) > 1.



Thank youl!



