Bases for permutation groups

Hong Yi Huang

4th International Conference on Groups, Graphs and Combinatorics

SUSTech, Shenzhen, China

11 November 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

(ロ)、(型)、(E)、(E)、 E) の(()

the **stabiliser** of α in G.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in *G*. Then

$$\bigcap_{\alpha\in\Omega} G_{\alpha} = 1.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in *G*. Then

$$\bigcap_{lpha\in\Omega} \mathcal{G}_{lpha} = 1.$$

Base: A subset $\Delta \subseteq \Omega$ such that

$$\bigcap_{\alpha\in\Delta}G_{\alpha}=1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in *G*. Then

$$\bigcap_{\alpha\in\Omega} \mathcal{G}_{\alpha} = 1.$$

Base: A subset $\Delta \subseteq \Omega$ such that

$$\bigcap_{\alpha\in\Delta}G_{\alpha}=1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Base size b(G): the minimal size of a base for G.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. Denote by

$$G_{\alpha} = \{ g \in G \mid \alpha^{g} = \alpha \}$$

the **stabiliser** of α in *G*. Then

$$\bigcap_{\alpha\in\Omega} G_{\alpha} = 1.$$

Base: A subset $\Delta \subseteq \Omega$ such that

$$\bigcap_{\alpha\in\Delta}G_{\alpha}=1.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Base size b(G): the minimal size of a base for G.

Remark. The **determining number** of a graph Γ is $b(Aut(\Gamma))$.

$$G = S_n, \ \Omega = \{1, \dots, n\}$$
:
• $\Delta = \{1, \dots, n-1\}$ is a base

 $G = S_n, \ \Omega = \{1, \dots, n\}:$ • $\Delta = \{1, \dots, n-1\}$ is a base • b(G) = n - 1.

- $G = S_n, \ \Omega = \{1, \dots, n\}:$ • $\Delta = \{1, \dots, n-1\}$ is a base • b(G) = n - 1.
- $G = D_{2n}$, $\Omega = \{1, \ldots, n\}$ is an *n*-gon:
 - Any pair of adjacent vertices in the *n*-gon is a base

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $G = S_n, \ \Omega = \{1, \dots, n\}:$ • $\Delta = \{1, \dots, n-1\}$ is a base • b(G) = n - 1.

$$G = D_{2n}$$
, $\Omega = \{1, \ldots, n\}$ is an *n*-gon:

• Any pair of adjacent vertices in the *n*-gon is a base

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

•
$$b(G) = 2.$$

 $G = S_n, \ \Omega = \{1, \dots, n\}:$ • $\Delta = \{1, \dots, n-1\}$ is a base • b(G) = n - 1.

$$G = D_{2n}$$
, $\Omega = \{1, \ldots, n\}$ is an *n*-gon:

• Any pair of adjacent vertices in the *n*-gon is a base

•
$$b(G) = 2.$$

 $G = GL(V), \ \Omega = V \setminus \{0\}$:

• $\Delta \subseteq \Omega$ is a base if and only if it contains a basis of V

 $G = S_n, \ \Omega = \{1, \dots, n\}:$ • $\Delta = \{1, \dots, n-1\}$ is a base • b(G) = n - 1.

$$G = D_{2n}$$
, $\Omega = \{1, \ldots, n\}$ is an *n*-gon:

• Any pair of adjacent vertices in the *n*-gon is a base

•
$$b(G) = 2.$$

 $G = \operatorname{GL}(V), \ \Omega = V \setminus \{0\}$:

• $\Delta \subseteq \Omega$ is a base if and only if it contains a basis of V

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• $b(G) = \dim V$.

Let $G = S_n$ and $\Omega = \{k$ -subsets of $\{1, \ldots, n\}\}$, where $2k \leq n$.

Let $G = S_n$ and $\Omega = \{k \text{-subsets of } \{1, \ldots, n\}\}$, where $2k \leq n$. Note. $\{\{1, \ldots, k\}, \{2, \ldots, k+1\}, \ldots, \{n-k+1, \ldots, n\}\}$ is a base.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $G = S_n$ and $\Omega = \{k$ -subsets of $\{1, \ldots, n\}\}$, where $2k \leq n$. Note. $\{\{1, \ldots, k\}, \{2, \ldots, k+1\}, \ldots, \{n-k+1, \ldots, n\}\}$ is a base. Mecenero & Spiga, 04/08/23; del Valle & Roney-Dougal, 08/08/23: b(G) = smallest integer ℓ such that

$$\sum_{\substack{\pi \vdash n \\ \pi = (1^{c_1}, \dots, n^{c_n})}} (-1)^{n - \sum_{i=1}^n c_i} \frac{n!}{\prod_{i=1}^n i^{c_i} c_i!} \left(\sum_{\substack{\eta \vdash k \\ \eta = (1^{b_1}, \dots, k^{b_k})}} \prod_{j=1}^k \binom{c_j}{b_j} \right)^\ell \neq 0.$$

Let $G = S_n$ and $\Omega = \{k$ -subsets of $\{1, \ldots, n\}\}$, where $2k \leq n$. Note. $\{\{1, \ldots, k\}, \{2, \ldots, k+1\}, \ldots, \{n-k+1, \ldots, n\}\}$ is a base. Mecenero & Spiga, 04/08/23; del Valle & Roney-Dougal, 08/08/23: b(G) = smallest integer ℓ such that

$$\sum_{\substack{\pi \vdash n \\ \pi = (1^{c_1}, \dots, n^{c_n})}} (-1)^{n - \sum_{i=1}^n c_i} \frac{n!}{\prod_{i=1}^n i^{c_i} c_i!} \left(\sum_{\substack{\eta \vdash k \\ \eta = (1^{b_1}, \dots, k^{b_k})}} \prod_{j=1}^k \binom{c_j}{b_j} \right)^\ell \neq 0.$$

A D N A 目 N A E N A E N A B N A C N

In general, determining b(G) is a very difficult problem!

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for any } \alpha \in \Delta \iff \mathsf{x}\mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} \iff \mathsf{x} = \mathsf{y}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^x = \alpha^y$$
 for any $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha \iff x = y.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

That is, elements of G is one-to-one to the pointwise images of Δ .

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for any } \alpha \in \Delta \iff \mathsf{x} \mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} \iff \mathsf{x} = \mathsf{y}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

That is, elements of G is one-to-one to the pointwise images of Δ . Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geq \log_{|\Omega|} |G|$.

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for any } \alpha \in \Delta \iff \mathsf{x} \mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} \iff \mathsf{x} = \mathsf{y}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

That is, elements of G is one-to-one to the pointwise images of Δ . Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geq \log_{|\Omega|} |G|$.

Write
$$\Delta = \{\alpha_1, \ldots, \alpha_{b(G)}\}$$
 and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$.

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for any } \alpha \in \Delta \iff \mathsf{x} \mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} \iff \mathsf{x} = \mathsf{y}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

That is, elements of G is one-to-one to the pointwise images of Δ . Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geq \log_{|\Omega|} |G|$.

Write
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G))} = 1$.

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^x = \alpha^y$$
 for any $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha \iff x = y.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

That is, elements of G is one-to-one to the pointwise images of Δ . Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geq \log_{|\Omega|} |G|$.

Write
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G))} = 1$.

Hence, $|G| \ge 2^{b(G)}$ and so $b(G) \le \log_2 |G|$.

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^x = \alpha^y$$
 for any $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha \iff x = y.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

That is, elements of G is one-to-one to the pointwise images of Δ . Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geq \log_{|\Omega|} |G|$.

Write
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G))} = 1.$

Hence, $|G| \ge 2^{b(G)}$ and so $b(G) \le \log_2 |G|$.

Primitive group: G_{α} is a maximal subgroup of *G*.

Let Δ be a base of size b(G) and let $x, y \in G$. Then

$$\alpha^{x} = \alpha^{y}$$
 for any $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} \iff x = y.$

That is, elements of G is one-to-one to the pointwise images of Δ . Thus, we have $|G| \leq |\Omega|^{b(G)}$, so $b(G) \geq \log_{|\Omega|} |G|$.

Write
$$\Delta = \{\alpha_1, \dots, \alpha_{b(G)}\}$$
 and $G^{(k)} = \bigcap_{i=1}^k G_{\alpha_i}$. Then
 $G > G^{(1)} > G^{(2)} > \dots > G^{(b(G))} = 1$.

Hence, $|G| \ge 2^{b(G)}$ and so $b(G) \le \log_2 |G|$.

Primitive group: G_{α} is a maximal subgroup of *G*. **Halasi, Liebeck & Maróti, 2019:**

G primitive $\implies b(G) \leqslant 2 \log_{|\Omega|} |G| + 24.$

・ロト・日本・日本・日本・日本

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Partial work on the case where H/Z(H) is simple

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Partial work on the case where H/Z(H) is simple (ask Eamonn).

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Partial work on the case where H/Z(H) is simple (ask Eamonn).

Almost simple: soc(G) is non-abelian simple.

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Partial work on the case where H/Z(H) is simple (ask Eamonn).

Almost simple: soc(G) is non-abelian simple.

• $soc(G) = A_n$ or sporadic \checkmark

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Partial work on the case where H/Z(H) is simple (ask Eamonn).

Almost simple: soc(G) is non-abelian simple.

•
$$soc(G) = A_n$$
 or sporadic \checkmark

• Burness, Liebeck & Shalev, 2007:

 $b(G) \leq 6$ if G is Lie type and **non-standard**

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

• Partial work on the case where H/Z(H) is simple (ask Eamonn).

Almost simple: soc(G) is non-abelian simple.

•
$$soc(G) = A_n$$
 or sporadic \checkmark

• Burness, Liebeck & Shalev, 2007:

 $b(G) \leq 6$ if G is Lie type and **non-standard**

Twisted wreath product: $G = T^k : P$ for some transitive $P \leq S_k$.

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

• Partial work on the case where H/Z(H) is simple (ask Eamonn).

Almost simple: soc(G) is non-abelian simple.

•
$$soc(G) = A_n$$
 or sporadic \checkmark

• Burness, Liebeck & Shalev, 2007:

 $b(G) \leq 6$ if G is Lie type and **non-standard**

Twisted wreath product: $G = T^k : P$ for some transitive $P \leq S_k$.

• Fawcett, 2022: *P* is quasiprimitive $\implies b(G) = 2$.

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

• Partial work on the case where H/Z(H) is simple (ask Eamonn).

Almost simple: soc(G) is non-abelian simple.

•
$$soc(G) = A_n$$
 or sporadic \checkmark

• Burness, Liebeck & Shalev, 2007:

 $b(G) \leq 6$ if G is Lie type and **non-standard**

Twisted wreath product: $G = T^k : P$ for some transitive $P \leq S_k$.

- Fawcett, 2022: *P* is quasiprimitive $\implies b(G) = 2$.
- Fawcett, 2022: $b(G) \leq \lceil \log_{|\Omega|} |G| \rceil + 2$.

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

Affine: $G = VH \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ is irreducible.

• Partial work on the case where H/Z(H) is simple (ask Eamonn).

Almost simple: soc(G) is non-abelian simple.

•
$$soc(G) = A_n$$
 or sporadic \checkmark

• Burness, Liebeck & Shalev, 2007:

 $b(G) \leq 6$ if G is Lie type and **non-standard**

Twisted wreath product: $G = T^k : P$ for some transitive $P \leq S_k$.

- Fawcett, 2022: *P* is quasiprimitive $\implies b(G) = 2$.
- Fawcett, 2022: $b(G) \leq \lceil \log_{|\Omega|} |G| \rceil + 2$.

Product type: Partial results (Burness & H, 2023)

Let $\ensuremath{\mathcal{T}}$ be a non-abelian finite simple group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Write $D = \{(t, \ldots, t) : t \in T\} \leqslant T^k$,

Let T be a non-abelian finite simple group.

Write $D = \{(t, \ldots, t) : t \in T\} \leq T^k$, so $T^k \leq \text{Sym}(\Omega)$ with $\Omega = [T^k : D]$.

Let T be a non-abelian finite simple group.

Write $D = \{(t, \ldots, t) : t \in T\} \leq T^k$, so $T^k \leq \text{Sym}(\Omega)$ with $\Omega = [T^k : D]$.

Diagonal type group: A group G with

$$T^k \triangleleft G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$$

Let T be a non-abelian finite simple group.

Write $D = \{(t, \ldots, t) : t \in T\} \leq T^k$, so $T^k \leq \text{Sym}(\Omega)$ with $\Omega = [T^k : D]$.

Diagonal type group: A group G with

$$T^k \triangleleft G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note.

• G induces a subgroup $P \leq S_k$ on [k].

Let T be a non-abelian finite simple group.

Write $D = \{(t, ..., t) : t \in T\} \leq T^k$, so $T^k \leq \text{Sym}(\Omega)$ with $\Omega = [T^k : D]$. Diagonal type group: A group G with

$$T^k \triangleleft G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Note.

- G induces a subgroup $P \leq S_k$ on [k].
- G is primitive $\iff P$ is primitive, or k = 2 and P = 1.

Let T be a non-abelian finite simple group.

Write $D = \{(t, ..., t) : t \in T\} \leq T^k$, so $T^k \leq \text{Sym}(\Omega)$ with $\Omega = [T^k : D]$. **Diagonal type group:** A group *G* with

 $T^k \triangleleft G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$

Note.

- G induces a subgroup $P \leq S_k$ on [k].
- G is primitive $\iff P$ is primitive, or k = 2 and P = 1.

•
$$T^k \triangleleft G \leqslant T^k.(\operatorname{Out}(T) \times P).$$

Let T be a non-abelian finite simple group.

Write $D = \{(t, ..., t) : t \in T\} \leq T^k$, so $T^k \leq \text{Sym}(\Omega)$ with $\Omega = [T^k : D]$. Diagonal type group: A group G with

$$T^k \triangleleft G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$$

Note.

- *G* induces a subgroup $P \leq S_k$ on [k].
- G is primitive $\iff P$ is primitive, or k = 2 and P = 1.

• $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P).$

Fawcett, 2013: b(G) = 2 if $P \notin \{A_k, S_k\}$.

Let T be a non-abelian finite simple group.

Write $D = \{(t, ..., t) : t \in T\} \leq T^k$, so $T^k \leq \text{Sym}(\Omega)$ with $\Omega = [T^k : D]$. Diagonal type group: A group G with

$$T^k \triangleleft G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$$

Note.

- *G* induces a subgroup $P \leq S_k$ on [k].
- G is primitive $\iff P$ is primitive, or k = 2 and P = 1.

• $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P).$

Fawcett, 2013: b(G) = 2 if $P \notin \{A_k, S_k\}$.

Fawcett, 2013: If $P \in \{A_k, S_k\}$ and b(G) = 2, then 2 < k < |T|.

Holomorph Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the holomorph of T.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the **holomorph** of T. Key observation:

$$b(G) = 2$$
 if $\exists S \subseteq T$ such that $|S| = k$ and $Y_{\{S\}} = 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the **holomorph** of T. Key observation:

b(G) = 2 if $\exists S \subseteq T$ such that |S| = k and $Y_{\{S\}} = 1$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

An approach:

Let $\mathcal{A} = \{S \subseteq T : |S| = k \text{ and } Y_{\{S\}} \neq 1\}$

Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the **holomorph** of T. Key observation:

$$b(G) = 2$$
 if $\exists S \subseteq T$ such that $|S| = k$ and $Y_{\{S\}} = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An approach:

Let $\mathcal{A} = \{S \subseteq T : |S| = k \text{ and } Y_{\{S\}} \neq 1\}$ and suppose $S \in \mathcal{A}$.

Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the **holomorph** of T. Key observation:

b(G) = 2 if $\exists S \subseteq T$ such that |S| = k and $Y_{\{S\}} = 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

An approach:

Let $\mathcal{A} = \{S \subseteq \mathcal{T} : |S| = k \text{ and } Y_{\{S\}} \neq 1\}$ and suppose $S \in \mathcal{A}$.

Then $\exists \sigma \in Y_{\{S\}}$ of prime order,

Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the **holomorph** of T. Key observation:

b(G) = 2 if $\exists S \subseteq T$ such that |S| = k and $Y_{\{S\}} = 1$.

An approach:

Let $\mathcal{A} = \{S \subseteq T : |S| = k \text{ and } Y_{\{S\}} \neq 1\}$ and suppose $S \in \mathcal{A}$.

Then $\exists \sigma \in Y_{\{S\}}$ of prime order, so

$$S \in \operatorname{fix}(\sigma, k) = \{S \subseteq T : |S| = k \text{ and } \sigma \in Y_{\{S\}}\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the **holomorph** of T. Key observation:

b(G) = 2 if $\exists S \subseteq T$ such that |S| = k and $Y_{\{S\}} = 1$.

An approach:

Let $\mathcal{A} = \{S \subseteq T : |S| = k \text{ and } Y_{\{S\}} \neq 1\}$ and suppose $S \in \mathcal{A}$. Then $\exists \sigma \in Y_{\{S\}}$ of prime order, so

$$S \in \operatorname{fix}(\sigma, k) = \{S \subseteq T : |S| = k \text{ and } \sigma \in Y_{\{S\}}\}.$$

Let \mathcal{P} be the set of elements of Y of prime order. Then we have

$$|\mathcal{A}| = \left| \bigcup_{\sigma \in \mathcal{P}} \mathsf{fix}(\sigma, k) \right|$$

Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the **holomorph** of T. Key observation:

b(G) = 2 if $\exists S \subseteq T$ such that |S| = k and $Y_{\{S\}} = 1$.

An approach:

Let $\mathcal{A} = \{S \subseteq T : |S| = k \text{ and } Y_{\{S\}} \neq 1\}$ and suppose $S \in \mathcal{A}$. Then $\exists \sigma \in Y_{\{S\}}$ of prime order, so

$$S \in \operatorname{fix}(\sigma, k) = \{S \subseteq T : |S| = k \text{ and } \sigma \in Y_{\{S\}}\}.$$

Let \mathcal{P} be the set of elements of Y of prime order. Then we have

$$|\mathcal{A}| = \left| \bigcup_{\sigma \in \mathcal{P}} \operatorname{fix}(\sigma, k) \right| \leq \sum_{\sigma \in \mathcal{P}} |\operatorname{fix}(\sigma, k)| = m.$$

Let Y = Hol(T) = T: Aut $(T) \leq Sym(T)$ be the **holomorph** of T. Key observation:

$$b(G) = 2$$
 if $\exists S \subseteq T$ such that $|S| = k$ and $Y_{\{S\}} = 1$.

An approach:

Let $\mathcal{A} = \{S \subseteq \mathcal{T} : |S| = k \text{ and } Y_{\{S\}} \neq 1\}$ and suppose $S \in \mathcal{A}$. Then $\exists \sigma \in Y_{\{S\}}$ of prime order, so

$$S \in \operatorname{fix}(\sigma, k) = \{S \subseteq T : |S| = k \text{ and } \sigma \in Y_{\{S\}}\}.$$

Let \mathcal{P} be the set of elements of Y of prime order. Then we have

$$|\mathcal{A}| = \left| \bigcup_{\sigma \in \mathcal{P}} \operatorname{fix}(\sigma, k) \right| \leq \sum_{\sigma \in \mathcal{P}} |\operatorname{fix}(\sigma, k)| = m.$$

Note. b(G) = 2 if $m < \binom{|T|}{k}$.

・ロ・・ 日・ ・ 田・ ・ 田・ ・ 日・ ・ の へ ()・

Main results

Theorem (H, 2023+)

If $3 \leq k \leq |T| - 3$, then $\exists S \subseteq T$ such that |S| = k and $Y_{\{S\}} = 1$.

Main results

Theorem (H, 2023+)

If $3 \leq k \leq |T| - 3$, then $\exists S \subseteq T$ such that |S| = k and $Y_{\{S\}} = 1$.

Theorem (H, 2023+)

Suppose $G \leq T^k$.(Out(T) × P) is a diagonal type primitive group with top group P. Then b(G) = 2 if and only if one of the following holds:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$P \notin \{A_k, S_k\};$$

•
$$3 \leq k \leq |T| - 3;$$

•
$$k \in \{|T| - 2, |T| - 1\}$$
 and $S_k \notin G$.

Main results

Theorem (H, 2023+)

If $3 \leq k \leq |T| - 3$, then $\exists S \subseteq T$ such that |S| = k and $Y_{\{S\}} = 1$.

Theorem (H, 2023+)

Suppose $G \leq T^k$.(Out(T) × P) is a diagonal type primitive group with top group P. Then b(G) = 2 if and only if one of the following holds:

•
$$P \notin \{A_k, S_k\};$$

•
$$3 \leq k \leq |T| - 3;$$

•
$$k \in \{|T| - 2, |T| - 1\}$$
 and $S_k \notin G$.

Theorem (H, 2023+)

Suppose G is a diagonal type primitive group. Then b(G) is computed. \checkmark

イロト 不得 トイヨト イヨト

э

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on $\Omega^{b(G)}$ (so $r(G) \ge 1$).

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on $\Omega^{b(G)}$ (so $r(G) \ge 1$).

Problem. Classify the transitive groups G with r(G) = 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on $\Omega^{b(G)}$ (so $r(G) \ge 1$).

Problem. Classify the transitive groups G with r(G) = 1.

Remark. If b(G) = 2, then

 $r(G) = 1 \iff$ the **Saxl graph** of G is G-arc-transitive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on $\Omega^{b(G)}$ (so $r(G) \ge 1$).

Problem. Classify the transitive groups G with r(G) = 1.

Remark. If b(G) = 2, then

 $r(G) = 1 \iff$ the **Saxl graph** of G is G-arc-transitive.

Let $\mathcal B$ be the set of almost simple primitive groups with soluble stabilisers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on $\Omega^{b(G)}$ (so $r(G) \ge 1$).

Problem. Classify the transitive groups G with r(G) = 1.

Remark. If b(G) = 2, then

 $r(G) = 1 \iff$ the **Saxl graph** of G is G-arc-transitive.

Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers. Burness, 2021: If $G \in \mathcal{B}$, then b(G) is known, and $b(G) \leq 5$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on $\Omega^{b(G)}$ (so $r(G) \ge 1$).

Problem. Classify the transitive groups G with r(G) = 1.

Remark. If b(G) = 2, then

 $r(G) = 1 \iff$ the **Saxl graph** of G is G-arc-transitive.

Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers. Burness, 2021: If $G \in \mathcal{B}$, then b(G) is known, and $b(G) \leq 5$. Burness & H, 2022/23: $G \in \mathcal{B}$ with $r(G) = 1 \checkmark$

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on $\Omega^{b(G)}$ (so $r(G) \ge 1$).

Problem. Classify the transitive groups G with r(G) = 1.

Remark. If b(G) = 2, then

 $r(G) = 1 \iff$ the **Saxl graph** of G is G-arc-transitive.

Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers. **Burness, 2021:** If $G \in \mathcal{B}$, then b(G) is known, and $b(G) \leq 5$. **Burness & H, 2022/23:** $G \in \mathcal{B}$ with $r(G) = 1 \checkmark$ **H, 2023+:** G diagonal type primitive with b(G) = 2 and $r(G) = 1 \checkmark$

Note. G has a regular orbit on $\Omega^k \iff b(G) \leq k$.

Let r(G) be the number of regular orbits on $\Omega^{b(G)}$ (so $r(G) \ge 1$).

Problem. Classify the transitive groups G with r(G) = 1.

Remark. If b(G) = 2, then

 $r(G) = 1 \iff$ the **Saxl graph** of G is G-arc-transitive.

Let \mathcal{B} be the set of almost simple primitive groups with soluble stabilisers. **Burness, 2021:** If $G \in \mathcal{B}$, then b(G) is known, and $b(G) \leq 5$. **Burness & H, 2022/23:** $G \in \mathcal{B}$ with $r(G) = 1 \checkmark$ **H, 2023+:** G diagonal type primitive with b(G) = 2 and $r(G) = 1 \checkmark$ **Freedman, H, Lee & Rekvényi, 2023+:**

G is a diagonal type primitive group with $b(G) > 2 \Longrightarrow r(G) > 1$.

Thank you!