The generalised Saxl graphs of finite permutation groups

Hongyi Huang

Topics in Group Theory

(on the occasion of Andrea Lucchini's $60th(+)$ birthday)

Padova, Italy

11 September 2024

Bases

Let $G \leqslant$ Sym(Ω) be a permutation group, with $|\Omega| < \infty$. Base: a subset of Ω with trivial pointwise stabiliser. **Base size** $b(G)$: minimal size of a base for G.

Bases

Let $G \leqslant$ Sym(Ω) be a permutation group, with $|\Omega| < \infty$. Base: a subset of Ω with trivial pointwise stabiliser. **Base size** $b(G)$: minimal size of a base for G.

Examples

•
$$
G = S_n
$$
, $|\Omega| = n$:
{1, ..., $n - 1$ } is a base; $b(G) = n - 1$.

Bases

Let $G \leqslant$ Sym(Ω) be a permutation group, with $|\Omega| < \infty$. Base: a subset of Ω with trivial pointwise stabiliser. **Base size** $b(G)$: minimal size of a base for G.

Examples

\n- \n
$$
G = S_n
$$
, $|\Omega| = n$:\n $\{1, \ldots, n-1\}$ is a base; $b(G) = n-1$.\n
\n- \n $G = GL(V), \Omega = V \setminus \{0\}$:\n $\Delta \subseteq \Omega$ is a base $\iff \Delta$ spans V ; $b(G) = \dim V$.\n
\n

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when $b(G) = 2$:

vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when $b(G) = 2$: vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

 $G = \mathsf{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when $b(G) = 2$: vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

 $G = \mathsf{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$

Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1$.

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when $b(G) = 2$:

vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

 $G = \mathsf{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$ Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1$. Hence, $\Sigma(G) \cong J(q+1,2)$ is a **Johnson graph**.

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when $b(G) = 2$:

vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

 $G = \mathsf{PGL}_2(q)$ and $\Omega = \{2\text{-subsets of }\{1\text{-spaces in }\mathbb{F}_q^2\}\}.$ Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1$. Hence, $\Sigma(G) \cong J(q+1,2)$ is a **Johnson graph**.

For example, when $q = 4$ we have the complement of the Petersen.

vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

Generating graph: vertices G, with $x \sim y \iff \langle x, y \rangle = G$.

———————————————————————————————

vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

Generating graph: vertices G, with $x \sim y \iff \langle x, y \rangle = G$. Lucchini, 20: Independence graph: vertices G, with

 $x \sim y \iff \{x, y\}$ is a subset of a generating set of G of minimal size.

———————————————————————————————

vertices Ω, with $\alpha \sim \beta \iff {\alpha, \beta}$ is a base.

Freedman, H, Lee & Rekvényi (FHLR), 24+:

Generalised Saxl graph $\Sigma(G)$ when $b(G) \geqslant 2$:

vertices Ω , with $\alpha \sim \beta \iff {\alpha, \beta}$ is a subset of a base of size $b(G)$.

———————————————————————————————

Generating graph: vertices G, with $x \sim y \iff \langle x, y \rangle = G$.

Lucchini, 20: Independence graph: vertices G, with

 $x \sim y \iff \{x, y\}$ is a subset of a generating set of G of minimal size.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let $G = GL(V)$ and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is **complete multipartite**.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let $G = GL(V)$ and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is **complete multipartite**.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let $G = GL(V)$ and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is **complete multipartite**.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Note. A connected component of $\Sigma(G)$ is a block of imprimitivity for G.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let $G = GL(V)$ and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is **complete multipartite**.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Note. A connected component of $\Sigma(G)$ is a block of imprimitivity for G.

If G is primitive, then $\Sigma(G)$ **is connected.**

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let $G = GL(V)$ and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is **complete multipartite**.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Note. A connected component of $\Sigma(G)$ is a block of imprimitivity for G.

If G is primitive, then $\Sigma(G)$ **is connected.**

Remarks.

• The converse is not true: $G = GL(V)$ and $\Omega = V \setminus \{0\}$.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let $G = GL(V)$ and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is **complete multipartite**.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Note. A connected component of $\Sigma(G)$ is a block of imprimitivity for G.

If G is primitive, then $\Sigma(G)$ **is connected.**

Remarks.

- The converse is not true: $G = GL(V)$ and $\Omega = V \setminus \{0\}$.
- $G = D_8 \times D_8$ and $\Omega = \{1, 2, 3, 4\}^2$: $\Sigma(G) = 2K_{4,4}$ (not connected).

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** $\text{soc}(G)$ is non-abelian simple.

• Precise $b(G)$ when soc $(G) = A_n$ or sporadic \checkmark

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** $\text{soc}(G)$ is non-abelian simple.

- Precise $b(G)$ when soc $(G) = A_n$ or sporadic \checkmark
- **Burness, 21:** Precise $b(G)$ when G_{α} is soluble \checkmark

The O'Nan-Scott theorem divides finite primitive groups into 5 types. **Almost simple:** $\text{soc}(G)$ is non-abelian simple.

- Precise $b(G)$ when soc $(G) = A_n$ or sporadic \checkmark
- **Burness, 21:** Precise $b(G)$ when G_α is soluble \checkmark

Diagonal type: $G \leq T^k$. ($Out(T) \times P$) for some $P \leq S_k$ and simple T.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** $\text{soc}(G)$ is non-abelian simple.

- Precise $b(G)$ when soc $(G) = A_n$ or sporadic \checkmark
- **Burness, 21:** Precise $b(G)$ when G_α is soluble \checkmark

Diagonal type: $G \leq T^k$. ($Out(T) \times P$) for some $P \leq S_k$ and simple T.

• Precise $b(G)$ is computed in every case \checkmark (Fawcett, 13; H, 24)

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** $\text{soc}(G)$ is non-abelian simple.

- Precise $b(G)$ when soc $(G) = A_n$ or sporadic \checkmark
- **Burness, 21:** Precise $b(G)$ when G_α is soluble \checkmark

Diagonal type: $G \leq T^k$. ($Out(T) \times P$) for some $P \leq S_k$ and simple T.

• Precise $b(G)$ is computed in every case $\sqrt{(Fawcett, 13; H, 24)}$

Twisted wreath product: $G = T^k$: P for some transitive $P \leq S_k$.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** $\text{soc}(G)$ is non-abelian simple.

- Precise $b(G)$ when soc $(G) = A_n$ or sporadic \checkmark
- **Burness, 21:** Precise $b(G)$ when G_{α} is soluble \checkmark

Diagonal type: $G \leq T^k$. ($Out(T) \times P$) for some $P \leq S_k$ and simple T.

• Precise $b(G)$ is computed in every case $\sqrt{(Fawcett, 13; H, 24)}$

Twisted wreath product: $G = T^k$: P for some transitive $P \leq S_k$.

• Fawcett, 22: P is primitive $\implies b(G) = 2$.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** $\text{soc}(G)$ is non-abelian simple.

- Precise $b(G)$ when soc $(G) = A_n$ or sporadic \checkmark
- **Burness, 21:** Precise $b(G)$ when G_{α} is soluble \checkmark

Diagonal type: $G \leq T^k$. ($Out(T) \times P$) for some $P \leq S_k$ and simple T.

• Precise $b(G)$ is computed in every case $\sqrt{(Fawcett, 13; H, 24)}$

Twisted wreath product: $G = T^k$: P for some transitive $P \leq S_k$.

• Fawcett, 22: P is primitive $\implies b(G) = 2$.

Affine & Product types: Partial results.

Conjecture (BG, 20; FHLR, 24+)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, $\Sigma(G)$ has diameter at most 2.

Conjecture (BG, 20; FHLR, 24+)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, $\Sigma(G)$ has diameter at most 2.

Example. $(G, G_{\alpha}) = (PGL_2(q), D_{2(q-1)}) \implies \Sigma(G) = J(q+1, 2).$

Conjecture (BG, 20; FHLR, 24+)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, $\Sigma(G)$ has diameter at most 2.

Example. $(G, G_{\alpha}) = (PGL_2(q), D_{2(\alpha-1)}) \implies \Sigma(G) = J(q+1, 2).$ Evidence:

- soc(G) \cong PSL₂(q) (BH, 22; FHLR, 24+)
- G almost simple and G_{α} soluble (BH, 22; FHLR, 24+)
- G almost simple sporadic and $b(G) \geq 3$ (FHLR, 24+)

Conjecture (BG, 20; FHLR, 24+)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, $\Sigma(G)$ has diameter at most 2. **Example.** $(G, G_{\alpha}) = (PGL_2(q), D_{2(\alpha-1)}) \implies \Sigma(G) = J(q+1, 2).$ Evidence:

- soc(G) \cong PSL₂(q) (BH, 22; FHLR, 24+)
- G almost simple and G_{α} soluble (BH, 22; FHLR, 24+)
- G almost simple sporadic and $b(G) \geq 3$ (FHLR, 24+)
- $G \leqslant T^k$. (Out(T) \times P) diagonal type, $P \notin \{A_k, S_k\}$ (H, 24+)
- $G = T^k \cdot P$ twisted wreath product, P primitive (H, 24+)

Let

$$
Q(G,k):=\frac{|\{(\alpha_1,\ldots,\alpha_k)\in\Omega^k:G_{\alpha_1}\cap\cdots\cap G_{\alpha_k}\neq 1\}|}{|\Omega|^k}
$$

be the probability that a random k-tuple is not a base for G.

Let

$$
Q(G,k):=\frac{|\{(\alpha_1,\ldots,\alpha_k)\in\Omega^k:G_{\alpha_1}\cap\cdots\cap G_{\alpha_k}\neq 1\}|}{|\Omega|^k}
$$

be the probability that a random k-tuple is not a base for G.

 $Q(G, k) < 1 \iff b(G) \leq k$.

Let

$$
Q(G,k):=\frac{|\{(\alpha_1,\ldots,\alpha_k)\in\Omega^k:G_{\alpha_1}\cap\cdots\cap G_{\alpha_k}\neq 1\}|}{|\Omega|^k}
$$

be the probability that a random k -tuple is not a base for G .

$$
\bullet \ \ Q(G,k) < 1 \iff b(G) \leqslant k.
$$

 $Q(G, b(G)) < 1/2 \implies \Sigma(G)$ has the Common Neighbour Property.

Let

$$
Q(G,k):=\frac{|\{(\alpha_1,\ldots,\alpha_k)\in\Omega^k:G_{\alpha_1}\cap\cdots\cap G_{\alpha_k}\neq 1\}|}{|\Omega|^k}
$$

be the probability that a random k -tuple is not a base for G .

$$
\bullet \ \ Q(G,k) < 1 \iff b(G) \leqslant k.
$$

 $Q(G, b(G)) < 1/2 \implies \Sigma(G)$ has the Common Neighbour Property.

If G is transitive then

$$
Q(G,k)<\sum_{x\in\mathcal{P}}\frac{|x^G\cap G_{\alpha}|^k}{|x^G|^k},
$$

where P is the set of prime order elements in G .

Let

$$
Q(G,k):=\frac{|\{(\alpha_1,\ldots,\alpha_k)\in\Omega^k:G_{\alpha_1}\cap\cdots\cap G_{\alpha_k}\neq 1\}|}{|\Omega|^k}
$$

be the probability that a random k -tuple is not a base for G .

$$
\bullet \ \ Q(G,k) < 1 \iff b(G) \leqslant k.
$$

 $Q(G, b(G)) < 1/2 \implies \Sigma(G)$ has the Common Neighbour Property.

If G is transitive then

$$
Q(G,k)<\sum_{x\in\mathcal{P}}\frac{|x^G\cap G_{\alpha}|^k}{|x^G|^k},
$$

where P is the set of prime order elements in G.

Example

If $(G, G_α) = (PGL_2(q), D_{2(q-1)})$ then $\Sigma(G) = J(q+1, 2)$ has the Common Neighbour Property, although $Q(G, b(G)) \rightarrow 1$ as $q \rightarrow \infty$.

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}.$

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}.$ Equivalently,

$$
\operatorname{reg}(G)=\frac{|\Omega^k|(1-Q(G,b(G)))}{|G|}.
$$

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}.$ Equivalently,

$$
\operatorname{reg}(\mathit{G})=\frac{|\Omega^k|(1-Q(\mathit{G},\mathit{b}(\mathit{G})))}{|\mathit{G}|}.
$$

Note. reg(G) \geq 1, and reg(G) = 1 $\implies \Sigma(G)$ is G-arc-transitive.

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}.$ Equivalently,

$$
\mathsf{reg}(\mathsf{G}) = \frac{|\Omega^k| (1 - Q(\mathsf{G}, \mathsf{b}(\mathsf{G})))}{|\mathsf{G}|}.
$$

Note. reg(G) ≥ 1 , and reg(G) = 1 $\implies \Sigma(G)$ is G-arc-transitive.

Problem. Classify the primitive groups G with reg(G) = 1.

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}.$ Equivalently,

$$
\mathsf{reg}(\mathsf{G}) = \frac{|\Omega^k| (1 - Q(\mathsf{G}, \mathsf{b}(\mathsf{G})))}{|\mathsf{G}|}.
$$

Note. reg(G) ≥ 1 , and reg(G) = 1 $\implies \Sigma(G)$ is G-arc-transitive.

Problem. Classify the primitive groups G with reg(G) = 1.

- G almost simple and G_{α} soluble $\sqrt{(BH, 22/23)}$
	- e.g. $(G, G_{\alpha}) = (PGL_2(q), D_{2(q-1)})$.

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}.$ Equivalently,

$$
\mathsf{reg}(\mathsf{G}) = \frac{|\Omega^k| (1 - Q(\mathsf{G}, \mathsf{b}(\mathsf{G})))}{|\mathsf{G}|}.
$$

Note. reg(G) ≥ 1 , and reg(G) = 1 $\implies \Sigma(G)$ is G-arc-transitive.

Problem. Classify the primitive groups G with reg(G) = 1.

• G almost simple and G_{α} soluble $\sqrt{(BH, 22/23)}$

e.g.
$$
(G, G_{\alpha}) = (\text{PGL}_2(q), D_{2(q-1)})
$$
.

• soc(G) \cong PSL₂(q) \checkmark (FHLR, 24+)

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}.$ Equivalently,

$$
\mathsf{reg}(\mathsf{G}) = \frac{|\Omega^k| (1 - Q(\mathsf{G}, \mathsf{b}(\mathsf{G})))}{|\mathsf{G}|}.
$$

Note. reg(G) ≥ 1 , and reg(G) = 1 $\implies \Sigma(G)$ is G-arc-transitive.

Problem. Classify the primitive groups G with reg(G) = 1.

• G almost simple and G_{α} soluble $\sqrt{(BH, 22/23)}$

e.g.
$$
(G, G_{\alpha}) = (PGL_2(q), D_{2(q-1)})
$$
.

- soc(G) \cong PSL₂(q) \checkmark (FHLR, 24+)
- G diagonal type \checkmark (H, 24; FHLR, 24+)

Note. If $b(G) = 2$, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**.

Note. If $b(G) = 2$, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for $b(G) > 2$? Not easy to describe!

Note. If $b(G) = 2$, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for $b(G) > 2$? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets.

Note. If $b(G) = 2$, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for $b(G) > 2$? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets. **Non-examples:** Non-2-transitive groups with reg(G) = 1.

Note. If $b(G) = 2$, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for $b(G) > 2$? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets. **Non-examples:** Non-2-transitive groups with reg(G) = 1.

Problem. Classify the primitive groups G s.t. $\Sigma(G)$ is complete.

Note. If $b(G) = 2$, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for $b(G) > 2$? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets. **Non-examples:** Non-2-transitive groups with reg(G) = 1.

Problem. Classify the primitive groups G s.t. $\Sigma(G)$ is complete.

FHLR, 24+:

A complete classification when $\operatorname{soc}(G) = \operatorname{PSL}_2(q)$

Note. If $b(G) = 2$, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for $b(G) > 2$? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets. **Non-examples:** Non-2-transitive groups with reg(G) = 1.

Problem. Classify the primitive groups G s.t. $\Sigma(G)$ is complete.

FHLR, 24+:

- A complete classification when $\operatorname{soc}(G) = \operatorname{PSL}_2(q)$
- Partial results when G is a sporadic group or of diagonal type.

Future work

- Study $\Sigma(G)$ when G is an imprimitive group.
- Study other graph invariants of $\Sigma(G)$ (e.g. clique number).

 \bullet

Thank you!