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Bases

Let G 6 Sym(Ω) be a permutation group, with |Ω| <∞.

Base: a subset of Ω with trivial pointwise stabiliser.

Base size b(G ): minimal size of a base for G .

Examples

G = Sn, |Ω| = n:

{1, . . . , n − 1} is a base; b(G ) = n − 1.

G = GL(V ), Ω = V \ {0}:
∆ ⊆ Ω is a base ⇐⇒ ∆ spans V ; b(G ) = dimV .

Hongyi Huang Generalised Saxl graphs 11 September 2024 2 / 12



Bases

Let G 6 Sym(Ω) be a permutation group, with |Ω| <∞.

Base: a subset of Ω with trivial pointwise stabiliser.

Base size b(G ): minimal size of a base for G .

Examples

G = Sn, |Ω| = n:

{1, . . . , n − 1} is a base; b(G ) = n − 1.

G = GL(V ), Ω = V \ {0}:
∆ ⊆ Ω is a base ⇐⇒ ∆ spans V ; b(G ) = dimV .

Hongyi Huang Generalised Saxl graphs 11 September 2024 2 / 12



Bases

Let G 6 Sym(Ω) be a permutation group, with |Ω| <∞.

Base: a subset of Ω with trivial pointwise stabiliser.

Base size b(G ): minimal size of a base for G .

Examples

G = Sn, |Ω| = n:

{1, . . . , n − 1} is a base; b(G ) = n − 1.

G = GL(V ), Ω = V \ {0}:
∆ ⊆ Ω is a base ⇐⇒ ∆ spans V ; b(G ) = dimV .

Hongyi Huang Generalised Saxl graphs 11 September 2024 2 / 12



Saxl graphs

Burness & Giudici (BG), 20: Saxl graph Σ(G ) when b(G ) = 2:

vertices Ω, with α ∼ β ⇐⇒ {α, β} is a base.

G = PGL2(q) and Ω = {2-subsets of {1-spaces in F2
q}}.

Note. Gα ∼= D2(q−1) and {α, β} is a base ⇐⇒ |α ∩ β| = 1.

Hence, Σ(G ) ∼= J(q + 1, 2) is a Johnson graph.

For example, when q = 4 we have the complement of the Petersen.
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Generalised Saxl graphs (inspired by Lucchini)
Saxl graph Σ(G ) when b(G ) = 2 :

vertices Ω, with α ∼ β ⇐⇒ {α, β} is a base.

Freedman, H, Lee & Rekvényi (FHLR), 24+:

Generalised Saxl graph Σ(G ) when b(G ) > 2 :

vertices Ω, with α ∼ β ⇐⇒ {α, β} is a subset of a base of size b(G ).

———————————————————————————————

Generating graph: vertices G , with x ∼ y ⇐⇒ 〈x , y〉 = G .

Lucchini, 20: Independence graph: vertices G , with

x ∼ y ⇐⇒ {x , y} is a subset of a generating set of G of minimal size.
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Basic properties

Throughout, let Σ(G ) be the generalised Saxl graph of G .

Example

Let G = GL(V ) and Ω = V \ {0}. Then b(G ) = dimV , and α ∼ β iff α
and β are linearly independent. So Σ(G ) is complete multipartite.

If G is transitive then Σ(G ) is G -vertex-transitive.

Note. A connected component of Σ(G ) is a block of imprimitivity for G .

If G is primitive, then Σ(G ) is connected.

Remarks.

The converse is not true: G = GL(V ) and Ω = V \ {0}.

G = D8 × D8 and Ω = {1, 2, 3, 4}2: Σ(G ) = 2K4,4 (not connected).
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Base sizes of primitive groups

The O’Nan-Scott theorem divides finite primitive groups into 5 types.

Almost simple: soc(G ) is non-abelian simple.

Precise b(G ) when soc(G ) = An or sporadic X

Burness, 21: Precise b(G ) when Gα is soluble X

Diagonal type: G 6 T k .(Out(T )× P) for some P 6 Sk and simple T .

Precise b(G ) is computed in every case X (Fawcett, 13; H, 24)

Twisted wreath product: G = T k :P for some transitive P 6 Sk .

Fawcett, 22: P is primitive =⇒ b(G ) = 2.

Affine & Product types: Partial results.
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Common Neighbour Conjecture

Conjecture (BG, 20; FHLR, 24+)

G primitive =⇒ any two vertices in Σ(G ) have a common neighbour.

In particular, Σ(G ) has diameter at most 2.

Example. (G ,Gα) = (PGL2(q),D2(q−1)) =⇒ Σ(G ) = J(q + 1, 2).

Evidence:

soc(G ) ∼= PSL2(q) (BH, 22; FHLR, 24+)

G almost simple and Gα soluble (BH, 22; FHLR, 24+)

G almost simple sporadic and b(G ) > 3 (FHLR, 24+)

G 6 T k .(Out(T )× P) diagonal type, P /∈ {Ak ,Sk} (H, 24+)

G = T k :P twisted wreath product, P primitive (H, 24+)
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Probabilistic methods
Let

Q(G , k) :=
|{(α1, . . . , αk) ∈ Ωk : Gα1 ∩ · · · ∩ Gαk

6= 1}|
|Ω|k

be the probability that a random k-tuple is not a base for G .

Q(G , k) < 1 ⇐⇒ b(G ) 6 k .

Q(G , b(G )) < 1/2 =⇒ Σ(G ) has the Common Neighbour Property.

If G is transitive then

Q(G , k) <
∑
x∈P

|xG ∩ Gα|k

|xG |k
,

where P is the set of prime order elements in G .

Example

If (G ,Gα) = (PGL2(q),D2(q−1)) then Σ(G ) = J(q + 1, 2) has the
Common Neighbour Property, although Q(G , b(G ))→ 1 as q →∞.
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Arc-transitivity

Let reg(G ) be the number of regular G -orbits on Ωb(G).

Equivalently,

reg(G ) =
|Ωk |(1− Q(G , b(G )))

|G |
.

Note. reg(G ) > 1, and reg(G ) = 1 =⇒ Σ(G ) is G -arc-transitive.

Problem. Classify the primitive groups G with reg(G ) = 1.

G almost simple and Gα soluble X (BH, 22/23)

e.g. (G ,Gα) = (PGL2(q),D2(q−1)).

soc(G ) ∼= PSL2(q) X (FHLR, 24+)

G diagonal type X (H, 24; FHLR, 24+)
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e.g. (G ,Gα) = (PGL2(q),D2(q−1)).

soc(G ) ∼= PSL2(q) X (FHLR, 24+)

G diagonal type X (H, 24; FHLR, 24+)
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Completeness

Note. If b(G ) = 2, then Σ(G ) is complete ⇐⇒ G is Frobenius.

Completeness of Σ(G ) for b(G ) > 2? Not easy to describe!

Examples: 2-transitive groups; IBIS groups; Sn on 2-subsets.

Non-examples: Non-2-transitive groups with reg(G ) = 1.

Problem. Classify the primitive groups G s.t. Σ(G ) is complete.

FHLR, 24+:

A complete classification when soc(G ) = PSL2(q) X

Partial results when G is a sporadic group or of diagonal type.
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Future work

Study Σ(G ) when G is an imprimitive group.

Study other graph invariants of Σ(G ) (e.g. clique number).

....
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Thank you!
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