The generalised Saxl graphs of finite permutation groups

Hongyi Huang

Topics in Group Theory

(on the occasion of Andrea Lucchini's 60th(+) birthday)

Padova, Italy

11 September 2024

Bases

Let $G \leq \text{Sym}(\Omega)$ be a permutation group, with $|\Omega| < \infty$. Base: a subset of Ω with trivial pointwise stabiliser. Base size b(G): minimal size of a base for G.

Bases

Let $G \leq \text{Sym}(\Omega)$ be a permutation group, with $|\Omega| < \infty$. Base: a subset of Ω with trivial pointwise stabiliser. Base size b(G): minimal size of a base for G.

Examples

•
$$G = S_n$$
, $|\Omega| = n$:
{1,..., $n-1$ } is a base; $b(G) = n-1$.

Bases

Let $G \leq \text{Sym}(\Omega)$ be a permutation group, with $|\Omega| < \infty$. Base: a subset of Ω with trivial pointwise stabiliser. Base size b(G): minimal size of a base for G.

Examples

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when b(G) = 2:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when b(G) = 2: vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

• $G = PGL_2(q)$ and $\Omega = \{2\text{-subsets of } \{1\text{-spaces in } \mathbb{F}_q^2\}\}.$

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when b(G) = 2: vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

• $G = PGL_2(q)$ and $\Omega = \{2\text{-subsets of } \{1\text{-spaces in } \mathbb{F}_q^2\}\}.$

Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\iff |\alpha \cap \beta| = 1$.

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when b(G) = 2:

vertices $\Omega,$ with $\alpha \sim \beta \iff \{\alpha,\beta\}$ is a base.

G = PGL₂(q) and Ω = {2-subsets of {1-spaces in F²_q}}.
Note. G_α ≅ D_{2(q-1)} and {α, β} is a base ⇔ |α ∩ β| = 1.
Hence, Σ(G) ≅ J(q + 1, 2) is a Johnson graph.

Burness & Giudici (BG), 20: Saxl graph $\Sigma(G)$ when b(G) = 2:

vertices $\Omega \text{, with } \alpha \sim \beta \iff \{\alpha,\beta\} \text{ is a base.}$

G = PGL₂(q) and Ω = {2-subsets of {1-spaces in ℝ²_q}}.
Note. G_α ≅ D_{2(q-1)} and {α, β} is a base ⇔ |α ∩ β| = 1.
Hence, Σ(G) ≅ J(q + 1, 2) is a Johnson graph.

For example, when q = 4 we have the complement of the Petersen.

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Generating graph: vertices *G*, with $x \sim y \iff \langle x, y \rangle = G$.

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Generating graph: vertices *G*, with $x \sim y \iff \langle x, y \rangle = G$. **Lucchini, 20: Independence graph:** vertices *G*, with

 $x \sim y \iff \{x, y\}$ is a subset of a generating set of G of minimal size.

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Freedman, H, Lee & Rekvényi (FHLR), 24+:

Generalised Saxl graph $\Sigma(G)$ when $b(G) \ge 2$: vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a subset of a base of size b(G).

Generating graph: vertices *G*, with $x \sim y \iff \langle x, y \rangle = G$.

Lucchini, 20: Independence graph: vertices G, with

 $x \sim y \iff \{x, y\}$ is a subset of a generating set of G of minimal size.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let G = GL(V) and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is complete multipartite.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let G = GL(V) and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is complete multipartite.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let G = GL(V) and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is complete multipartite.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Note. A connected component of $\Sigma(G)$ is a block of imprimitivity for G.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let G = GL(V) and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is complete multipartite.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Note. A connected component of $\Sigma(G)$ is a block of imprimitivity for G.

• If G is **primitive**, then $\Sigma(G)$ is connected.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let G = GL(V) and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is complete multipartite.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Note. A connected component of $\Sigma(G)$ is a block of imprimitivity for G.

• If G is **primitive**, then $\Sigma(G)$ is connected.

Remarks.

• The converse is not true: G = GL(V) and $\Omega = V \setminus \{0\}$.

Throughout, let $\Sigma(G)$ be the **generalised** Saxl graph of G.

Example

Let G = GL(V) and $\Omega = V \setminus \{0\}$. Then $b(G) = \dim V$, and $\alpha \sim \beta$ iff α and β are linearly independent. So $\Sigma(G)$ is complete multipartite.

• If G is transitive then $\Sigma(G)$ is G-vertex-transitive.

Note. A connected component of $\Sigma(G)$ is a block of imprimitivity for G.

• If G is **primitive**, then $\Sigma(G)$ is connected.

Remarks.

- The converse is not true: G = GL(V) and $\Omega = V \setminus \{0\}$.
- $G = D_8 \times D_8$ and $\Omega = \{1, 2, 3, 4\}^2$: $\Sigma(G) = 2K_{4,4}$ (not connected).

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** soc(G) is non-abelian simple.

• Precise b(G) when $soc(G) = A_n$ or sporadic \checkmark

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** soc(G) is non-abelian simple.

- Precise b(G) when $soc(G) = A_n$ or sporadic \checkmark
- Burness, 21: Precise b(G) when G_{α} is soluble \checkmark

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** soc(G) is non-abelian simple.

- Precise b(G) when $soc(G) = A_n$ or sporadic \checkmark
- **Burness**, 21: Precise b(G) when G_{α} is soluble \checkmark

Diagonal type: $G \leq T^k$.(Out(T) × P) for some $P \leq S_k$ and simple T.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** soc(G) is non-abelian simple.

- Precise b(G) when $soc(G) = A_n$ or sporadic \checkmark
- **Burness**, **21**: Precise b(G) when G_{α} is soluble \checkmark

Diagonal type: $G \leq T^k$.(Out(T) × P) for some $P \leq S_k$ and simple T.

• Precise b(G) is computed in every case \checkmark (Fawcett, 13; H, 24)

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** soc(G) is non-abelian simple.

- Precise b(G) when $soc(G) = A_n$ or sporadic \checkmark
- **Burness**, **21**: Precise b(G) when G_{α} is soluble \checkmark

Diagonal type: $G \leq T^k$.(Out(T) × P) for some $P \leq S_k$ and simple T.

• Precise b(G) is computed in every case \checkmark (Fawcett, 13; H, 24)

Twisted wreath product: $G = T^k : P$ for some transitive $P \leq S_k$.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** soc(G) is non-abelian simple.

- Precise b(G) when $soc(G) = A_n$ or sporadic \checkmark
- **Burness**, 21: Precise b(G) when G_{α} is soluble \checkmark

Diagonal type: $G \leq T^k$.(Out(T) × P) for some $P \leq S_k$ and simple T.

• Precise b(G) is computed in every case \checkmark (Fawcett, 13; H, 24)

Twisted wreath product: $G = T^k P$ for some transitive $P \leq S_k$.

• Fawcett, 22: P is primitive $\implies b(G) = 2$.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types. **Almost simple:** soc(G) is non-abelian simple.

- Precise b(G) when $soc(G) = A_n$ or sporadic \checkmark
- **Burness**, 21: Precise b(G) when G_{α} is soluble \checkmark

Diagonal type: $G \leq T^k$.(Out(T) × P) for some $P \leq S_k$ and simple T.

• Precise b(G) is computed in every case \checkmark (Fawcett, 13; H, 24)

Twisted wreath product: $G = T^k : P$ for some transitive $P \leq S_k$.

• Fawcett, 22: P is primitive $\implies b(G) = 2$.

Affine & Product types: Partial results.

Conjecture (BG, 20; FHLR, 24+)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, $\Sigma(G)$ has diameter at most 2.

Conjecture (BG, 20; FHLR, 24+)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, $\Sigma(G)$ has diameter at most 2.

Example. $(G, G_{\alpha}) = (\mathsf{PGL}_2(q), D_{2(q-1)}) \implies \Sigma(G) = J(q+1, 2).$

Conjecture (BG, 20; FHLR, 24+)

G primitive \implies any two vertices in $\Sigma(G)$ have a common neighbour.

In particular, $\Sigma(G)$ has diameter at most 2. **Example.** $(G, G_{\alpha}) = (PGL_2(q), D_{2(q-1)}) \implies \Sigma(G) = J(q+1, 2).$ **Evidence:**

- $\operatorname{soc}(G) \cong \operatorname{PSL}_2(q)$ (BH, 22; FHLR, 24+)
- G almost simple and G_{α} soluble (BH, 22; FHLR, 24+)
- G almost simple sporadic and $b(G) \ge 3$ (FHLR, 24+)

Conjecture (BG, 20; FHLR, 24+)

 ${\mathcal G}$ primitive \implies any two vertices in $\Sigma({\mathcal G})$ have a common neighbour.

In particular, $\Sigma(G)$ has diameter at most 2. **Example.** $(G, G_{\alpha}) = (PGL_2(q), D_{2(q-1)}) \implies \Sigma(G) = J(q+1, 2).$ **Evidence:**

- $\operatorname{soc}(G) \cong \operatorname{PSL}_2(q)$ (BH, 22; FHLR, 24+)
- G almost simple and G_{α} soluble (BH, 22; FHLR, 24+)
- G almost simple sporadic and $b(G) \ge 3$ (FHLR, 24+)
- $G \leq T^k.(\operatorname{Out}(T) \times P)$ diagonal type, $P \notin \{A_k, S_k\}$ (H, 24+)
- $G = T^k : P$ twisted wreath product, P primitive (H, 24+)

Let

$$Q(G,k) := \frac{|\{(\alpha_1, \ldots, \alpha_k) \in \Omega^k : G_{\alpha_1} \cap \cdots \cap G_{\alpha_k} \neq 1\}|}{|\Omega|^k}$$

be the probability that a random k-tuple is not a base for G.

Let

$$Q(G,k) := \frac{|\{(\alpha_1, \ldots, \alpha_k) \in \Omega^k : G_{\alpha_1} \cap \cdots \cap G_{\alpha_k} \neq 1\}|}{|\Omega|^k}$$

be the probability that a random k-tuple is not a base for G.

•
$$Q(G,k) < 1 \iff b(G) \leqslant k$$
.

Let

$$Q(G,k) := \frac{|\{(\alpha_1, \ldots, \alpha_k) \in \Omega^k : G_{\alpha_1} \cap \cdots \cap G_{\alpha_k} \neq 1\}|}{|\Omega|^k}$$

be the probability that a random k-tuple is not a base for G.

•
$$Q(G,k) < 1 \iff b(G) \leqslant k$$
.

• $Q(G, b(G)) < 1/2 \implies \Sigma(G)$ has the Common Neighbour Property.

Let

$$Q(G,k) := rac{|\{(lpha_1,\ldots,lpha_k)\in\Omega^k:G_{lpha_1}\cap\cdots\cap G_{lpha_k}
eq 1\}|}{|\Omega|^k}$$

be the probability that a random k-tuple is not a base for G.

•
$$Q(G,k) < 1 \iff b(G) \leqslant k$$
.

• $Q(G, b(G)) < 1/2 \implies \Sigma(G)$ has the Common Neighbour Property.

If G is transitive then

$$Q(G,k) < \sum_{x \in \mathcal{P}} \frac{|x^G \cap G_{\alpha}|^k}{|x^G|^k},$$

where \mathcal{P} is the set of prime order elements in G.

Let

$$Q(G,k) := rac{|\{(lpha_1,\ldots,lpha_k)\in\Omega^k:G_{lpha_1}\cap\cdots\cap G_{lpha_k}
eq 1\}|}{|\Omega|^k}$$

be the probability that a random k-tuple is not a base for G.

•
$$Q(G,k) < 1 \iff b(G) \leqslant k$$
.

• $Q(G, b(G)) < 1/2 \implies \Sigma(G)$ has the Common Neighbour Property.

If G is transitive then

$$Q(G,k) < \sum_{x \in \mathcal{P}} \frac{|x^G \cap G_{\alpha}|^k}{|x^G|^k},$$

where \mathcal{P} is the set of prime order elements in G.

Example

If $(G, G_{\alpha}) = (PGL_2(q), D_{2(q-1)})$ then $\Sigma(G) = J(q+1, 2)$ has the Common Neighbour Property, although $Q(G, b(G)) \rightarrow 1$ as $q \rightarrow \infty$.

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}$.

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}$. Equivalently,

$$\operatorname{reg}(G) = rac{|\Omega^k|(1-Q(G,b(G)))|}{|G|}.$$

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}$. Equivalently,

$$\operatorname{reg}(G) = rac{|\Omega^k|(1 - Q(G, b(G)))|}{|G|}.$$

Note. $\operatorname{reg}(G) \ge 1$, and $\operatorname{reg}(G) = 1 \implies \Sigma(G)$ is G-arc-transitive.

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}$. Equivalently,

$$\mathsf{reg}(G) = rac{|\Omega^k|(1-Q(G,b(G)))|}{|G|}.$$

Note. $\operatorname{reg}(G) \ge 1$, and $\operatorname{reg}(G) = 1 \implies \Sigma(G)$ is G-arc-transitive.

Problem. Classify the primitive groups G with reg(G) = 1.

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}$. Equivalently,

$$\mathsf{reg}(G) = rac{|\Omega^k|(1-Q(G,b(G)))|}{|G|}.$$

Note. $\operatorname{reg}(G) \ge 1$, and $\operatorname{reg}(G) = 1 \implies \Sigma(G)$ is *G*-arc-transitive.

Problem. Classify the primitive groups G with reg(G) = 1.

• *G* almost simple and G_{α} soluble \checkmark (BH, 22/23) e.g. $(G, G_{\alpha}) = (PGL_2(q), D_{2(q-1)}).$

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}$. Equivalently,

$$\mathsf{reg}(G) = rac{|\Omega^k|(1-Q(G,b(G)))|}{|G|}.$$

Note. $\operatorname{reg}(G) \ge 1$, and $\operatorname{reg}(G) = 1 \implies \Sigma(G)$ is *G*-arc-transitive.

Problem. Classify the primitive groups G with reg(G) = 1.

- G almost simple and G_{α} soluble \checkmark (BH, 22/23)
 - e.g. $(G, G_{\alpha}) = (PGL_2(q), D_{2(q-1)}).$
- $\operatorname{soc}(G) \cong \operatorname{PSL}_2(q) \checkmark (FHLR, 24+)$

Let reg(G) be the number of regular G-orbits on $\Omega^{b(G)}$. Equivalently,

$$\mathsf{reg}(G) = rac{|\Omega^k|(1-Q(G,b(G)))|}{|G|}.$$

Note. $\operatorname{reg}(G) \ge 1$, and $\operatorname{reg}(G) = 1 \implies \Sigma(G)$ is G-arc-transitive.

Problem. Classify the primitive groups G with reg(G) = 1.

• G almost simple and G_{α} soluble \checkmark (BH, 22/23)

e.g.
$$(G, G_{\alpha}) = (\mathsf{PGL}_2(q), D_{2(q-1)}).$$

- $\operatorname{soc}(G) \cong \operatorname{PSL}_2(q) \checkmark (FHLR, 24+)$
- G diagonal type ✓ (H, 24; FHLR, 24+)

Note. If b(G) = 2, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**.

Note. If b(G) = 2, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for b(G) > 2? Not easy to describe!

Note. If b(G) = 2, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for b(G) > 2? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets.

Note. If b(G) = 2, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for b(G) > 2? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets. **Non-examples:** Non-2-transitive groups with $\operatorname{reg}(G) = 1$.

Note. If b(G) = 2, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for b(G) > 2? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets. **Non-examples:** Non-2-transitive groups with reg(G) = 1.

Problem. Classify the primitive groups G s.t. $\Sigma(G)$ is complete.

Note. If b(G) = 2, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for b(G) > 2? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets. **Non-examples:** Non-2-transitive groups with $\operatorname{reg}(G) = 1$.

Problem. Classify the primitive groups G s.t. $\Sigma(G)$ is complete.

FHLR, 24+:

• A complete classification when $soc(G) = PSL_2(q) \checkmark$

Note. If b(G) = 2, then $\Sigma(G)$ is complete $\iff G$ is **Frobenius**. Completeness of $\Sigma(G)$ for b(G) > 2? Not easy to describe! **Examples:** 2-transitive groups; **IBIS groups**; S_n on 2-subsets. **Non-examples:** Non-2-transitive groups with reg(G) = 1.

Problem. Classify the primitive groups G s.t. $\Sigma(G)$ is complete.

FHLR, 24+:

- A complete classification when $soc(G) = PSL_2(q) \checkmark$
- Partial results when G is a sporadic group or of diagonal type.

Future work

- Study $\Sigma(G)$ when G is an imprimitive group.
- Study other graph invariants of $\Sigma(G)$ (e.g. clique number).

•

Thank you!