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Automorphisms

Throughout, everything is finite.
Let ' = (VT, ET) be a simple graph.
Automorphism: g € Sym(VT) such that v ~ w <= v& ~ w8.
Automorphism group Aut(I"): The group of all the automorphisms.
oM=K, = Aut(lnN =S,
e [=C, (n=3) = Aut(lN) = Dy,

How can we "break” the symmetries of a graph?

e Colouring vertices (setwise)

e Fixing vertices (pointwise)
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Consider I' = Cs, where we have Aut(l") = Dxj.

Which automorphisms preserve the following colourings?

o Aut(l, Gi) = Aut(l, &) = Aut(l', G3) = Zs, and Aut(l', G) = 1.

Distinguishing colouring: A colouring C of I' such that Aut(l', C) = 1.

Distinguishing number D(I"): The minimal number of colours in a distin-
guishing colouring of . (e.g. D(Cs) = 3.)
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Some results

Klavzar, Wong & Zhu, 2006:

D(T') < the maximal degree of I', unless ' = K,,, K, , or Cs.
Remark. D(K,) =n; D(K,,) =n+1; D(C,) =2if n > 6.
Praeger, 1993; Devillers, Harper & Morgan, 2019:

If ' is 2-arc-transitive, then one of the following holds.
o [ is complete;
o [ is bipartite;
e D(IN =2

o [ = Cs, K3OKj3, Petersen or its complement.
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Partitions

Note. A colouring is a partition of vertices.
Let G < Sym(Q) be a transitive permutation group of degree n.
Distinguishing partition: A partition N = {m1,..., 7y} of Q such that

ﬂ Giry = 1.
i=1

Distinguishing number D(G): The minimal size of a dist. partition.
Remark. D(I') = D(Aut(l')), so D(D1g) = 3 and D(D»,) = 2 for n > 6.
Examples

e D(S,)=n; D(A;) =n—1.

0o D(G)=1 < G=1

o G #1lisregular = D(G) =2.
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Primitive groups

Note. The following statements are equivalent.
e D(G) =2
@ G has a regular orbit on the power set P(Q2) of Q;
e 3 A CQsuch that Gjay = 1.

G is called primitive if G, is maximal in G.

Theorem (Cameron, Neumann & Sax|, 1984; Seress, 1997)
G # An, Sy primitive = D(G) = 2, with 43 exceptions of degree < 32. J

Dolfi, 2000: D(G) < 4 for each exception.
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Fixing sets

Which automorphisms of I = Cg survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset A C VT such that [ ca Aut(M)a = 1.

Fixing (determining) number fix([): The minimal size of such a A.
o =K, = fix(N) =n—-1
o [=C, = fix(IN =2.
o Aut(lN =1 < fix(l) =0.
o D(IN < fix(l) + 1.
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Bases

Let G < Sym() be a transitive permutation group.
Base: A subset A C Q such that Ga) =(\,en Ga = 1.
Base size b(G): The minimal size of a base for G.
Remark. fix(I') = b(Aut(I)).

e G=5,Q={1,...,n} = b(G)=n—-1.

e G=Dy, (n=23), Q={1,...,n} = b(G)=2.

e H(G)=0 <= G=1

o D(G) < b(G) + 1.

G =GL4(q), Q=FI\ {0} = b(G)=d.
Klavzar, Wong & Zhu, 2006: D(G) =2 if F # F3, F3, F3 or 3.
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Base sizes

Observation: If A is a base and x,y € G, then

o= foralae A < xy te ﬂ Go = Gp) <= x=y.
acA
That is, each group element is uniquely determined by its action on A.

o |G| < nP(C)

@ A small base A provides an efficient way to store the elements of G,
using |Al-tuples rather than |Q|-tuples.

Question: How small is b(G)?

Note. b(G) =1 <= G # 1 is regular.
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Base-two groups

Let G < Sym(Q) be transitive of degree n with point stabiliser H = G,.

b(G) =2 <= H # 1 has a regular orbit on Q2
<~ H#*1& HNH& =1forsome g€ G

Recall. G is called primitive if H is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

p prime, G = Dy, and Q = {1,...,p} = G primitive and b(G) = 2. J
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Probabilistic methods

Let
[{(a, ) € Q% : G N Gg # 1}
Q?

be the probability that a random pair in Q is not a base for G.

Q(G) =

Note. {«, 3} is not a base iff there exists x € G, N Gg of prime order.

The probability that a random pair is fixed by x € G is fpr(x)?, where

Gl x€ N H
o) =9 = T

is the fixed point ratio of x. Therefore,

Q(6) <D for(x)* = 3 Ix€ I for(x)? =: Q(6),

x€EP

where P = J; x© is the set of elements of prime order in G.

Probabilistic method: Q(G) <1 = b(G) < 2.
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An example
We have b(G) < 2 if

G)—Z\xclfpr Z |xGﬂH’2 .

where P = U-x- is the set of elements of prime order in G.

Note. If > |x® N H| < A and |x®| > B for all i, then @(G) < A?/B.

Example

Let p > 11 be a prime, G = S, and H = AGL1(p). Note that we have
> Ix€ (1 H| < |H| = p(p—1) =: A

If |x;| = p then |x®| = (p — 1)!, and if x; has cycle shape [1, r(P=1)/"] then

G p! p!
| = —on/r=ty Z t-n/2(=Ty,
p=/r(E=1)1 7 2(p=1)/2( 27

r

|x;

=: B.

It is easy to see that A2/B — 0, so Q(G) — 0 and b(G) < 2
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Some results

The O’Nan-Scott Theorem divides finite primitive groups into 5 types.
Affine: Partial classification in the setting H/Z(H) is simple.
Twisted wreath type: Partial results (Fawcett, 2022)

Almost simple: T < G < Aut(T) for non-abelian simple T.
o Burness et al., 2010/11: T alternating or sporadic v'
o G Lie type: Partial answers

Product type: G < LP with its product action on ¥, where L < Sym(X).
Bailey & Cameron, 2011:

b(L?P) =2 <= L, has at least D(P) regular orbits on X.

Burness & H, 2022+: Progress where G < L} P
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Diagonal type

Diagonal type: TX <1 G < T*.(Out(T) x P), P is primitive or P = Ay.
Write Q = TX/D, where D = {(t,...,t):t € T} and set a = D, so

Go=GN{(a,...,a)m:a€ Aut(T), 7 € P}.

Note. If kK > 32 and P # A, Sk then D(P) = 2, so there exists a
distinguishing partition [k] = A; U Ay U Az of distinct sizes.

Write T = (x,y) and 8 = D(t1,...,tk) € Q, where
ti=1ifieA, ti=xifie Dy, ti=yifieAs.

Suppose g = (a,...,a)T € G, N Gg. Then m = 1 since 7 preserves [k] =
A3 UAU A3 Thus, a € Cayy(1y(x) N Cau(1y(y) =L and so g = 1.
Fawcett, 2013: P # Ax, Sk = b(G) = 2.

H, 2022+: If P = Ay, then b(G) =2 <= 2 < k < |T|.



Part 1V

The Sax| graph of a base-two group
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Sax| graphs
Assume G < Sym(€) is transitive of degree n and b(G) = 2.
Burness & Giudici, 2020: Saxl graph X(G):

vertices €, with a ~ <= {«, 3} is a base.

Example
e G is Frobenius <— XY (G) = K,.
e.g. G = Do, and n = p prime.
@ G=ZmlZyand n=2m = X(G) =Ky m.
o G =Gla(q) and Q@ =F2\ {0}.
Note. {a,3} is a base <= {a,3} is a basis for F2.

Hence, ¥(G) = Ky — (9 + 1)Kq4_1 is complete multipartite.
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Further example

o G = PGLy(q) and Q = {2-subsets of {1-spaces in F2}}.
Note. G, = Dy(q_1) and {a, 3} is a base <= |aNfg| = 1.
Hence, X(G) = J(q + 1,2) is a Johnson graph.

For example, when g = 4 we have the complement of the Petersen.
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Valency
Let X () be the set of neighbours of « in £(G).

Notes.
@ ¥ () is the union of regular G,-orbits.
o |X(a)| = r(G)|Gyl|, where r(G) is the number of regular G,-orbits.
Burness & Giudici, 2020: |X(a)| = p is a prime iff the following holds:
© G=ZplZy, n=2pand L(G) =K, p;
@ G=53, n=p+1=3and £(G) =Ks;
o G=AGL1(27), n=p+1=2f and Z(G) = K, 1.

In particular, the Petersen graph is not a Sax| graph.
Chen & H, 2022: G almost simple primitive and |X(«)| prime-power v/
eg q=2"+1, G=PGLay(q), Gy = Dyq_1) and |Z(a)| = 271,
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Orbital graphs

Note. Y (G) is the union of the r(G) regular orbital graphs of G.
Thus, X(G) is a G-orbital graph <— r(G) = 1.

Problem. Classify the finite primitive groups G with r(G) = 1.

Burness & H, 20214: G almost simple and G, soluble v/
e.g. G = PGLQ(q) and Ga = D2(q—1)'
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Connectedness
Note. G is primitive = ¥(G) is connected.

Question: What is the diameter of £(G) if G is primitive?

Conjecture (Burness & Giudici, 2020)
G primitive and o, 3 € Q = X(a)NX(B) # 0.

Recall that (G)|Gal |Z ()|
r N «o
Q(G) Q] 1]

is the probability that a random pair in € is not a base for G.
Recall. Q(G) <1 < b(G) < 2.

Note. Q(G) <1/2 — |Z(a)| > 3|Q| = Z(a)NZ(B) # 0.
e.g. p =11 prime, (G, H) = (5p,AGL1(p)) = Q(G) < 1/2.
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Burness-Giudici conjecture

Example

If G = PGLa(q) and G, = Dy(q—1), then (G) = J(q + 1,2) has the
common neighbour property, though Q(G) — 1 as g — oo.

Some other evidence:

@ Chen & Du 2020+; Burness & H, 2021+: soc(G) = La(q) v
@ Burness & H, 2021+: G almost simple with G, soluble v/

Recall. ¥(«) is the union of regular G,-orbits.

BG conjecture: Y(o) meets the union of regular Gg-orbits.

Conjecture (Burness & H, 2022+)

G primitive and o, f € Q = X (o) meets every regular Gg-orbit.
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Future work

@ Other invariants of the Saxl graph

Burness & H, 2021+: Results on clique and independence numbers

Generalisations of Saxl graphs

Bases for affine groups

Seress 1996: b(G) < 4 if G is primitive and soluble

(]

Distinguishing numbers for transitive groups

Seress 1996: D(G) < 5 if G is soluble



Thank youl!



