Bases, distinguishing partitions and probabilistic methods

Hong Yi Huang

Discrete Structures and Algorithms Seminar

University of Melbourne

18 August 2022

Throughout, everything is finite.

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple graph.

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{Aut}(\Gamma) \cong S_n$$

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{Aut}(\Gamma) \cong S_n$$

•
$$\Gamma = \mathbf{C}_n \ (n \ge 3) \implies \operatorname{Aut}(\Gamma) \cong D_{2n}$$

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{Aut}(\Gamma) \cong S_n$$

•
$$\Gamma = \mathbf{C}_n \ (n \ge 3) \implies \operatorname{Aut}(\Gamma) \cong D_{2n}$$

How can we "break" the symmetries of a graph?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Throughout, everything is finite.

Let $\Gamma = (V\Gamma, E\Gamma)$ be a simple graph.

Automorphism: $g \in \text{Sym}(V\Gamma)$ such that $v \sim w \iff v^g \sim w^g$.

Automorphism group Aut(Γ): The group of all the automorphisms.

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{Aut}(\Gamma) \cong S_n$$

•
$$\Gamma = \mathbf{C}_n \ (n \ge 3) \implies \operatorname{Aut}(\Gamma) \cong D_{2n}$$

How can we "break" the symmetries of a graph?

- Colouring vertices (setwise)
- Fixing vertices (pointwise)

Part I

Distinguishing numbers for groups and graphs

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

• $\operatorname{Aut}(\Gamma, C_1) \cong \operatorname{Aut}(\Gamma, C_2) \cong \operatorname{Aut}(\Gamma, C_3) \cong \mathbb{Z}_2$, and $\operatorname{Aut}(\Gamma, C_4) = 1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

• $\operatorname{Aut}(\Gamma, C_1) \cong \operatorname{Aut}(\Gamma, C_2) \cong \operatorname{Aut}(\Gamma, C_3) \cong \mathbb{Z}_2$, and $\operatorname{Aut}(\Gamma, C_4) = 1$.

Distinguishing colouring: A colouring C of Γ such that $Aut(\Gamma, C) = 1$.

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

• $\operatorname{Aut}(\Gamma, C_1) \cong \operatorname{Aut}(\Gamma, C_2) \cong \operatorname{Aut}(\Gamma, C_3) \cong \mathbb{Z}_2$, and $\operatorname{Aut}(\Gamma, C_4) = 1$.

Distinguishing colouring: A colouring C of Γ such that Aut(Γ , C) = 1. **Distinguishing number** $D(\Gamma)$: The minimal number of colours in a distinguishing colouring of Γ .

Consider $\Gamma = \mathbf{C}_5$, where we have $Aut(\Gamma) \cong D_{10}$.

Which automorphisms preserve the following colourings?

• $\operatorname{Aut}(\Gamma, C_1) \cong \operatorname{Aut}(\Gamma, C_2) \cong \operatorname{Aut}(\Gamma, C_3) \cong \mathbb{Z}_2$, and $\operatorname{Aut}(\Gamma, C_4) = 1$.

Distinguishing colouring: A colouring C of Γ such that Aut(Γ , C) = 1. **Distinguishing number** $D(\Gamma)$: The minimal number of colours in a distinguishing colouring of Γ . (e.g. $D(\mathbf{C}_5) = 3$.)

Some results

Klavžar, Wong & Zhu, 2006:

 $D(\Gamma) \leq \text{the maximal degree of } \Gamma, \text{ unless } \Gamma \cong \mathbf{K}_n, \mathbf{K}_{n,n} \text{ or } \mathbf{C}_5.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Some results

Klavžar, Wong & Zhu, 2006:

 $D(\Gamma) \leq \text{the maximal degree of } \Gamma, \text{ unless } \Gamma \cong \mathbf{K}_n, \mathbf{K}_{n,n} \text{ or } \mathbf{C}_5.$ **Remark.** $D(\mathbf{K}_n) = n; D(\mathbf{K}_{n,n}) = n + 1; D(\mathbf{C}_n) = 2 \text{ if } n \geq 6.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Some results

Klavžar, Wong & Zhu, 2006:

 $D(\Gamma) \leq$ the maximal degree of Γ , unless $\Gamma \cong \mathbf{K}_n$, $\mathbf{K}_{n,n}$ or \mathbf{C}_5 . **Remark.** $D(\mathbf{K}_n) = n$; $D(\mathbf{K}_{n,n}) = n + 1$; $D(\mathbf{C}_n) = 2$ if $n \geq 6$. **Praeger, 1993; Devillers, Harper & Morgan, 2019:** If Γ is 2-arc-transitive, then one of the following holds.

- Γ is complete;
- Γ is bipartite;
- D(Γ) = 2;
- $\Gamma \cong C_5$, $K_3 \Box K_3$, Petersen or its complement.

Note. A colouring is a partition of vertices.

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Distinguishing number D(G): The minimal size of a dist. partition.

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1$$

Distinguishing number D(G): The minimal size of a dist. partition. **Remark.** $D(\Gamma) = D(Aut(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Distinguishing number D(G): The minimal size of a dist. partition.

Remark. $D(\Gamma) = D(\operatorname{Aut}(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

•
$$D(S_n) = n$$

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1$$

Distinguishing number D(G): The minimal size of a dist. partition.

Remark. $D(\Gamma) = D(\operatorname{Aut}(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

•
$$D(S_n) = n; D(A_n) = n - 1.$$

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1$$

Distinguishing number D(G): The minimal size of a dist. partition.

Remark. $D(\Gamma) = D(\operatorname{Aut}(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

•
$$D(S_n) = n; D(A_n) = n - 1$$

•
$$D(G) = 1 \iff G = 1.$$

Note. A colouring is a partition of vertices.

Let $G \leq \text{Sym}(\Omega)$ be a **transitive** permutation group of degree *n*.

Distinguishing partition: A partition $\Pi = \{\pi_1, \ldots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1$$

Distinguishing number D(G): The minimal size of a dist. partition.

Remark. $D(\Gamma) = D(\operatorname{Aut}(\Gamma))$, so $D(D_{10}) = 3$ and $D(D_{2n}) = 2$ for $n \ge 6$.

•
$$D(S_n) = n; D(A_n) = n - 1.$$

•
$$D(G) = 1 \iff G = 1.$$

•
$$G \neq 1$$
 is regular $\implies D(G) = 2$.

Note. The following statements are equivalent.

- D(G) = 2;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω ;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.

Note. The following statements are equivalent.

- D(G) = 2;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω ;

- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}} = 1$.
- *G* is called **primitive** if G_{α} is maximal in *G*.

Note. The following statements are equivalent.

- D(G) = 2;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω ;

•
$$\exists \ \Delta \subseteq \Omega$$
 such that $G_{\{\Delta\}} = 1$.

G is called **primitive** if G_{α} is maximal in *G*.

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997) $G \neq A_n, S_n$ primitive $\implies D(G) = 2$

Note. The following statements are equivalent.

- D(G) = 2;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω ;

•
$$\exists \ \Delta \subseteq \Omega$$
 such that $\mathcal{G}_{\{\Delta\}} = 1.$

G is called **primitive** if G_{α} is maximal in *G*.

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997) $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, with 43 exceptions of degree ≤ 32 .

Note. The following statements are equivalent.

- D(G) = 2;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω ;

•
$$\exists \ \Delta \subseteq \Omega$$
 such that $G_{\{\Delta\}} = 1$.

G is called **primitive** if G_{α} is maximal in *G*.

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997) $G \neq A_n, S_n$ primitive $\implies D(G) = 2$, with 43 exceptions of degree ≤ 32 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Dolfi, 2000: $D(G) \leq 4$ for each exception.

Part II

Bases for permutation groups

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Fixing sets

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Fixing sets

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ
Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$.

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{fix}(\Gamma) = n - 1.$$

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{fix}(\Gamma) = n - 1$$
.

•
$$\Gamma = \mathbf{C}_n \implies \operatorname{fix}(\Gamma) = 2.$$

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{fix}(\Gamma) = n - 1$$

•
$$\Gamma = \mathbf{C}_n \implies \operatorname{fix}(\Gamma) = 2.$$

•
$$\operatorname{Aut}(\Gamma) = 1 \iff \operatorname{fix}(\Gamma) = 0.$$

Which automorphisms of $\Gamma = \mathbf{C}_5$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V\Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha} = 1$. Fixing (determining) number fix(Γ): The minimal size of such a Δ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

•
$$\Gamma = \mathbf{K}_n \implies \operatorname{fix}(\Gamma) = n - 1$$

•
$$\Gamma = \mathbf{C}_n \implies \operatorname{fix}(\Gamma) = 2.$$

•
$$\operatorname{Aut}(\Gamma) = 1 \iff \operatorname{fix}(\Gamma) = 0.$$

• $D(\Gamma) \leq \operatorname{fix}(\Gamma) + 1$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group.

Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. Base size b(G): The minimal size of a base for G.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix(Γ) = $b(\text{Aut}(\Gamma))$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix(Γ) = $b(\text{Aut}(\Gamma))$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\} \implies b(G) = n - 1$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** $\text{fix}(\Gamma) = b(\text{Aut}(\Gamma))$.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\} \implies b(G) = n - 1$.

•
$$G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$$

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix $(\Gamma) = b(\text{Aut}(\Gamma))$. • $G = S_n, \Omega = \{1, ..., n\} \implies b(G) = n - 1$.

•
$$G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$$

• $b(G) = 0 \iff G = 1.$

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix(Γ) = $b(\text{Aut}(\Gamma))$. • $G = S_n$, $\Omega = \{1, ..., n\} \implies b(G) = n - 1$.

•
$$G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$$

•
$$b(G) = 0 \iff G = 1.$$

• $D(G) \leq b(G) + 1$.

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix $(\Gamma) = b(\text{Aut}(\Gamma))$. • $G = S_n, \Omega = \{1, ..., n\} \implies b(G) = n - 1$.

• $G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$

- $b(G) = 0 \iff G = 1.$
- $D(G) \leq b(G) + 1$.
- $G = \operatorname{GL}_d(q), \ \Omega = \mathbb{F}_q^d \setminus \{0\} \implies b(G) = d.$

Let $G \leq \text{Sym}(\Omega)$ be a transitive permutation group. **Base:** A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)} = \bigcap_{\alpha \in \Delta} G_{\alpha} = 1$. **Base size** b(G): The minimal size of a base for G. **Remark.** fix(Γ) = $b(\text{Aut}(\Gamma))$.

•
$$G = S_n$$
, $\Omega = \{1, \ldots, n\} \implies b(G) = n - 1$.

•
$$G = D_{2n} \ (n \ge 3), \ \Omega = \{1, \ldots, n\} \implies b(G) = 2.$$

•
$$b(G) = 0 \iff G = 1.$$

- $D(G) \leq b(G) + 1$.
- $G = \operatorname{GL}_d(q), \ \Omega = \mathbb{F}_q^d \setminus \{0\} \implies b(G) = d.$

Klavžar, Wong & Zhu, 2006: D(G) = 2 if $\mathbb{F}_q^d \neq \mathbb{F}_2^2$, \mathbb{F}_2^3 , \mathbb{F}_4^2 or \mathbb{F}_3^2 .

Observation: If Δ is a base and $x, y \in G$,

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y}$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)}$

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y}$$
 for all $\alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^x = \alpha^y \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha = G_{(\Delta)} \iff x = y.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

That is, each group element is uniquely determined by its action on Δ .

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^x = \alpha^y \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_\alpha = G_{(\Delta)} \iff x = y.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

That is, each group element is uniquely determined by its action on Δ .

•
$$|G| \leq n^{b(G)}$$

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for all } \alpha \in \Delta \iff \mathsf{x}\mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} = \mathsf{G}_{(\Delta)} \iff \mathsf{x} = \mathsf{y}.$$

That is, each group element is uniquely determined by its action on Δ .

- $|G| \leq n^{b(G)}$
- A small base Δ provides an efficient way to store the elements of G, using |Δ|-tuples rather than |Ω|-tuples.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{x} = \alpha^{y} \text{ for all } \alpha \in \Delta \iff xy^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha} = G_{(\Delta)} \iff x = y.$$

That is, each group element is uniquely determined by its action on Δ .

•
$$|G| \leqslant n^{b(G)}$$

 A small base Δ provides an efficient way to store the elements of G, using |Δ|-tuples rather than |Ω|-tuples.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Question: How small is b(G)?

Observation: If Δ is a base and $x, y \in G$, then

$$\alpha^{\mathsf{x}} = \alpha^{\mathsf{y}} \text{ for all } \alpha \in \Delta \iff \mathsf{x}\mathsf{y}^{-1} \in \bigcap_{\alpha \in \Delta} \mathsf{G}_{\alpha} = \mathsf{G}_{(\Delta)} \iff \mathsf{x} = \mathsf{y}.$$

That is, each group element is uniquely determined by its action on Δ .

•
$$|G| \leqslant n^{b(G)}$$

 A small base Δ provides an efficient way to store the elements of G, using |Δ|-tuples rather than |Ω|-tuples.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Question: How small is b(G)?

Note. $b(G) = 1 \iff G \neq 1$ is regular.

Part III

The base-two project

(ロ)、(型)、(E)、(E)、 E) の(()

Let $G \leq \text{Sym}(\Omega)$ be transitive of degree *n* with point stabiliser $H = G_{\alpha}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $G \leq \text{Sym}(\Omega)$ be transitive of degree *n* with point stabiliser $H = G_{\alpha}$.

$$\begin{split} b(G) &= 2 \iff H \neq 1 \text{ has a regular orbit on } \Omega \\ & \iff H \neq 1 \text{ \& } H \cap H^g = 1 \text{ for some } g \in G \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let $G \leq \text{Sym}(\Omega)$ be transitive of degree *n* with point stabiliser $H = G_{\alpha}$.

$$\begin{split} b(G) &= 2 \iff H \neq 1 \text{ has a regular orbit on } \Omega \\ & \iff H \neq 1 \And H \cap H^g = 1 \text{ for some } g \in G \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recall. G is called **primitive** if H is maximal in G.

Let $G \leq \text{Sym}(\Omega)$ be transitive of degree *n* with point stabiliser $H = G_{\alpha}$.

$$\begin{split} b(G) &= 2 \iff H \neq 1 \text{ has a regular orbit on } \Omega \\ & \iff H \neq 1 \text{ \& } H \cap H^g = 1 \text{ for some } g \in G \end{split}$$

Recall. G is called **primitive** if H is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let $G \leq \text{Sym}(\Omega)$ be transitive of degree *n* with point stabiliser $H = G_{\alpha}$.

$$\begin{split} b(G) &= 2 \iff H \neq 1 \text{ has a regular orbit on } \Omega \\ & \iff H \neq 1 \text{ \& } H \cap H^g = 1 \text{ for some } g \in G \end{split}$$

Recall. G is called **primitive** if H is maximal in G.

Problem. Classify the finite primitive groups G with b(G) = 2.

Example

p prime, $G = D_{2p}$ and $\Omega = \{1, \dots, p\} \implies G$ primitive and b(G) = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let

$$\mathcal{Q}(\mathcal{G}) = rac{|\{(lpha,eta)\in\Omega^2: \mathcal{G}_lpha\cap\mathcal{G}_eta
eq1\}|}{|\Omega|^2}$$

(ロ)、(型)、(E)、(E)、 E) の(()

be the probability that a random pair in Ω is **not** a base for *G*.

Let

$$Q(G) = rac{|\{(lpha,eta)\in\Omega^2: G_lpha\cap G_eta
eq 1\}|}{|\Omega|^2}$$

be the probability that a random pair in Ω is **not** a base for *G*.

Note. $\{\alpha, \beta\}$ is not a base iff there exists $x \in G_{\alpha} \cap G_{\beta}$ of prime order.

Let

$$Q(G) = rac{|\{(lpha,eta)\in\Omega^2: G_lpha\cap G_eta
eq 1\}|}{|\Omega|^2}$$

be the probability that a random pair in Ω is **not** a base for *G*.

Note. $\{\alpha, \beta\}$ is not a base iff there exists $x \in G_{\alpha} \cap G_{\beta}$ of prime order. The probability that a random pair is fixed by $x \in G$ is $fpr(x)^2$, where

$$\operatorname{fpr}(x) = \frac{|C_{\Omega}(x)|}{|\Omega|} = \frac{|x^{\mathsf{G}} \cap H|}{|x^{\mathsf{G}}|}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is the fixed point ratio of x.

Let

$$Q(G) = rac{|\{(lpha,eta)\in\Omega^2: G_lpha\cap G_eta
eq 1\}|}{|\Omega|^2}$$

be the probability that a random pair in Ω is **not** a base for *G*.

Note. $\{\alpha, \beta\}$ is not a base iff there exists $x \in G_{\alpha} \cap G_{\beta}$ of prime order. The probability that a random pair is fixed by $x \in G$ is $fpr(x)^2$, where

$$\mathsf{fpr}(x) = rac{|\mathcal{C}_{\Omega}(x)|}{|\Omega|} = rac{|x^G \cap H|}{|x^G|}$$

is the fixed point ratio of x. Therefore,

$$Q(G) \leqslant \sum_{x \in \mathcal{P}} \operatorname{fpr}(x)^2 = \sum_i |x_i^G| \operatorname{fpr}(x)^2 =: \widehat{Q}(G),$$

where $\mathcal{P} = \bigcup_i x_i^{\mathcal{G}}$ is the set of elements of prime order in \mathcal{G} .

Let

$$Q(G) = rac{|\{(lpha,eta)\in\Omega^2: G_lpha\cap G_eta
eq 1\}|}{|\Omega|^2}$$

be the probability that a random pair in Ω is **not** a base for *G*.

Note. $\{\alpha, \beta\}$ is not a base iff there exists $x \in G_{\alpha} \cap G_{\beta}$ of prime order. The probability that a random pair is fixed by $x \in G$ is $fpr(x)^2$, where

$$\operatorname{fpr}(x) = rac{|C_{\Omega}(x)|}{|\Omega|} = rac{|x^{\mathsf{G}} \cap H|}{|x^{\mathsf{G}}|}$$

is the fixed point ratio of x. Therefore,

$$Q(G) \leqslant \sum_{x \in \mathcal{P}} \operatorname{fpr}(x)^2 = \sum_i |x_i^G| \operatorname{fpr}(x)^2 =: \widehat{Q}(G),$$

where $\mathcal{P} = \bigcup_i x_i^G$ is the set of elements of prime order in G. **Probabilistic method:** $\widehat{Q}(G) < 1 \implies b(G) \leq 2$.

An example We have $b(G) \leq 2$ if

$$\widehat{Q}(G) = \sum_i |x_i^G| \operatorname{\sf fpr}(x)^2 = \sum_i rac{|x_i^G \cap H|^2}{|x_i^G|} < 1,$$

where $\mathcal{P} = \bigcup_i x_i^G$ is the set of elements of prime order in G.

An example We have $b(G) \leq 2$ if

$$\widehat{Q}(G) = \sum_i |x_i^G| \operatorname{fpr}(x)^2 = \sum_i rac{|x_i^G \cap H|^2}{|x_i^G|} < 1,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\mathcal{P} = \bigcup_i x_i^G$ is the set of elements of prime order in G. **Note.** If $\sum_i |x_i^G \cap H| \leq A$ and $|x_i^G| \geq B$ for all i, then $\widehat{Q}(G) \leq A^2/B$.
$$\widehat{Q}(G) = \sum_i |x_i^G| \operatorname{fpr}(x)^2 = \sum_i rac{|x_i^G \cap H|^2}{|x_i^G|} < 1,$$

where $\mathcal{P} = \bigcup_i x_i^G$ is the set of elements of prime order in *G*.

Note. If $\sum_i |x_i^{\mathcal{G}} \cap H| \leq A$ and $|x_i^{\mathcal{G}}| \geq B$ for all *i*, then $\widehat{Q}(\mathcal{G}) \leq A^2/B$.

Example

Let $p \ge 11$ be a prime, $G = S_p$ and $H = AGL_1(p)$.

$$\widehat{Q}(G) = \sum_i |x_i^G| \operatorname{fpr}(x)^2 = \sum_i rac{|x_i^G \cap H|^2}{|x_i^G|} < 1,$$

where $\mathcal{P} = \bigcup_i x_i^G$ is the set of elements of prime order in *G*.

Note. If $\sum_{i} |x_i^{\mathcal{G}} \cap H| \leq A$ and $|x_i^{\mathcal{G}}| \geq B$ for all *i*, then $\widehat{Q}(\mathcal{G}) \leq A^2/B$.

Example

Let $p \ge 11$ be a prime, $G = S_p$ and $H = AGL_1(p)$. Note that we have $\sum_i |x_i^G \cap H| \le |H| = p(p-1) =: A$.

$$\widehat{Q}(G) = \sum_i |x_i^G| \operatorname{fpr}(x)^2 = \sum_i rac{|x_i^G \cap H|^2}{|x_i^G|} < 1,$$

where $\mathcal{P} = \bigcup_i x_i^G$ is the set of elements of prime order in *G*.

Note. If $\sum_{i} |x_i^{\mathcal{G}} \cap H| \leq A$ and $|x_i^{\mathcal{G}}| \geq B$ for all *i*, then $\widehat{Q}(\mathcal{G}) \leq A^2/B$.

Example

Let $p \ge 11$ be a prime, $G = S_p$ and $H = AGL_1(p)$. Note that we have $\sum_i |x_i^G \cap H| \le |H| = p(p-1) =: A$. If $|x_i| = p$ then $|x_i^G| = (p-1)!$,

$$\widehat{Q}(G) = \sum_i |x_i^G| \operatorname{fpr}(x)^2 = \sum_i rac{|x_i^G \cap H|^2}{|x_i^G|} < 1,$$

where $\mathcal{P} = \bigcup_i x_i^G$ is the set of elements of prime order in *G*.

Note. If $\sum_{i} |x_i^{\mathcal{G}} \cap H| \leq A$ and $|x_i^{\mathcal{G}}| \geq B$ for all *i*, then $\widehat{Q}(\mathcal{G}) \leq A^2/B$.

Example

Let $p \ge 11$ be a prime, $G = S_p$ and $H = AGL_1(p)$. Note that we have $\sum_i |x_i^G \cap H| \le |H| = p(p-1) =: A$. If $|x_i| = p$ then $|x_i^G| = (p-1)!$, and if x_i has cycle shape $[1, r^{(p-1)/r}]$ then

$$|x_i^G| = \frac{p!}{r^{(p-1)/r}(\frac{p-1}{r})!} \ge \frac{p!}{2^{(p-1)/2}(\frac{p-1}{2})!} =: B.$$

$$\widehat{Q}(G) = \sum_i |x_i^G| \operatorname{fpr}(x)^2 = \sum_i rac{|x_i^G \cap H|^2}{|x_i^G|} < 1,$$

where $\mathcal{P} = \bigcup_i x_i^G$ is the set of elements of prime order in *G*.

Note. If $\sum_{i} |x_i^{\mathcal{G}} \cap H| \leq A$ and $|x_i^{\mathcal{G}}| \geq B$ for all *i*, then $\widehat{Q}(\mathcal{G}) \leq A^2/B$.

Example

Let $p \ge 11$ be a prime, $G = S_p$ and $H = AGL_1(p)$. Note that we have $\sum_i |x_i^G \cap H| \le |H| = p(p-1) =: A$. If $|x_i| = p$ then $|x_i^G| = (p-1)!$, and if x_i has cycle shape $[1, r^{(p-1)/r}]$ then

$$|x_i^G| = \frac{p!}{r^{(p-1)/r}(\frac{p-1}{r})!} \ge \frac{p!}{2^{(p-1)/2}(\frac{p-1}{2})!} =: B.$$

It is easy to see that $A^2/B \to 0$, so $\widehat{Q}(G) \to 0$ and $b(G) \leqslant 2$.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. **Affine:** Partial classification in the setting H/Z(H) is simple.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. **Affine:** Partial classification in the setting H/Z(H) is simple. **Twisted wreath type:** Partial results (Fawcett, 2022)

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. **Affine:** Partial classification in the setting H/Z(H) is simple. **Twisted wreath type:** Partial results (Fawcett, 2022) **Almost simple:** $T \leq G \leq \operatorname{Aut}(T)$ for non-abelian simple T.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. **Affine:** Partial classification in the setting H/Z(H) is simple. **Twisted wreath type:** Partial results (Fawcett, 2022) **Almost simple:** $T \leq G \leq \operatorname{Aut}(T)$ for non-abelian simple T.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Burness et al., 2010/11: T alternating or sporadic ✓

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. **Affine:** Partial classification in the setting H/Z(H) is simple. **Twisted wreath type:** Partial results (Fawcett, 2022) **Almost simple:** $T \leq G \leq \operatorname{Aut}(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic ✓
- G Lie type: Partial answers

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. **Affine:** Partial classification in the setting H/Z(H) is simple. **Twisted wreath type:** Partial results (Fawcett, 2022) **Almost simple:** $T \leq G \leq \operatorname{Aut}(T)$ for non-abelian simple T.

Burness et al., 2010/11: T alternating or sporadic ✓

• G Lie type: Partial answers

Product type: $G \leq L P$ with its product action on Σ^k , where $L \leq Sym(\Sigma)$.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. **Affine:** Partial classification in the setting H/Z(H) is simple. **Twisted wreath type:** Partial results (Fawcett, 2022) **Almost simple:** $T \leq G \leq \operatorname{Aut}(T)$ for non-abelian simple T.

Burness et al., 2010/11: T alternating or sporadic ✓

G Lie type: Partial answers

Product type: $G \leq L \wr P$ with its product action on Σ^k , where $L \leq Sym(\Sigma)$. **Bailey & Cameron, 2011:**

 $b(L \wr P) = 2 \iff L_{\sigma}$ has at least D(P) regular orbits on Σ .

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types. **Affine:** Partial classification in the setting H/Z(H) is simple. **Twisted wreath type:** Partial results (Fawcett, 2022) **Almost simple:** $T \leq G \leq \operatorname{Aut}(T)$ for non-abelian simple T.

Burness et al., 2010/11: T alternating or sporadic ✓

G Lie type: Partial answers

Product type: $G \leq L \wr P$ with its product action on Σ^k , where $L \leq \text{Sym}(\Sigma)$. **Bailey & Cameron, 2011:**

 $b(L \wr P) = 2 \iff L_{\sigma}$ has at least D(P) regular orbits on Σ .

Burness & H, 2022+: Progress where $G < L \wr P$

Diagonal type: $T^k \triangleleft G \leqslant T^k.(\operatorname{Out}(T) \times P)$, P is primitive or $P = A_2$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Diagonal type: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$, *P* is primitive or $P = A_2$. Write $\Omega = T^k/D$, where $D = \{(t, \ldots, t) : t \in T\}$ and set $\alpha = D$, so

$$G_{\alpha} = G \cap \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(T), \pi \in P\}.$$

Diagonal type: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$, *P* is primitive or $P = A_2$. Write $\Omega = T^k/D$, where $D = \{(t, \ldots, t) : t \in T\}$ and set $\alpha = D$, so

$$G_{\alpha} = G \cap \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(T), \pi \in P\}.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Diagonal type: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$, *P* is primitive or $P = A_2$. Write $\Omega = T^k/D$, where $D = \{(t, \ldots, t) : t \in T\}$ and set $\alpha = D$, so

$$\mathcal{G}_{\alpha} = \mathcal{G} \cap \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(\mathcal{T}), \pi \in \mathcal{P}\}.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \dots, t_k) \in \Omega$, where

 $t_i = 1$ if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Diagonal type: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$, *P* is primitive or $P = A_2$. Write $\Omega = T^k/D$, where $D = \{(t, \ldots, t) : t \in T\}$ and set $\alpha = D$, so

$$\mathcal{G}_{\alpha} = \mathcal{G} \cap \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(\mathcal{T}), \pi \in \mathcal{P}\}.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \dots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, \ldots, a)\pi \in G_{\alpha} \cap G_{\beta}$.

Diagonal type: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$, *P* is primitive or $P = A_2$. Write $\Omega = T^k/D$, where $D = \{(t, \ldots, t) : t \in T\}$ and set $\alpha = D$, so

$$\mathcal{G}_{\alpha} = \mathcal{G} \cap \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(\mathcal{T}), \pi \in \mathcal{P}\}.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \dots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi = 1$ since π preserves $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$.

Diagonal type: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$, *P* is primitive or $P = A_2$. Write $\Omega = T^k/D$, where $D = \{(t, \ldots, t) : t \in T\}$ and set $\alpha = D$, so

$$\mathcal{G}_{\alpha} = \mathcal{G} \cap \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(\mathcal{T}), \pi \in \mathcal{P}\}.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \dots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi = 1$ since π preserves $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$. Thus, $a \in C_{Aut(T)}(x) \cap C_{Aut(T)}(y) = 1$ and so g = 1.

Diagonal type: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$, *P* is primitive or $P = A_2$. Write $\Omega = T^k/D$, where $D = \{(t, \ldots, t) : t \in T\}$ and set $\alpha = D$, so

$$\mathcal{G}_{\alpha} = \mathcal{G} \cap \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(\mathcal{T}), \pi \in \mathcal{P}\}.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \dots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi = 1$ since π preserves $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$. Thus, $a \in C_{Aut(T)}(x) \cap C_{Aut(T)}(y) = 1$ and so g = 1. Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$.

Diagonal type: $T^k \leq G \leq T^k.(\operatorname{Out}(T) \times P)$, *P* is primitive or $P = A_2$. Write $\Omega = T^k/D$, where $D = \{(t, \ldots, t) : t \in T\}$ and set $\alpha = D$, so

$$\mathcal{G}_{\alpha} = \mathcal{G} \cap \{(a, \ldots, a)\pi : a \in \operatorname{Aut}(\mathcal{T}), \pi \in \mathcal{P}\}.$$

Note. If k > 32 and $P \neq A_k, S_k$ then D(P) = 2, so there exists a distinguishing partition $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$ of **distinct sizes**.

Write $T = \langle x, y \rangle$ and $\beta = D(t_1, \dots, t_k) \in \Omega$, where

$$t_i = 1$$
 if $i \in \Delta_1$, $t_i = x$ if $i \in \Delta_2$, $t_i = y$ if $i \in \Delta_3$.

Suppose $g = (a, ..., a)\pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi = 1$ since π preserves $[k] = \Delta_1 \cup \Delta_2 \cup \Delta_3$. Thus, $a \in C_{Aut(T)}(x) \cap C_{Aut(T)}(y) = 1$ and so g = 1. Fawcett, 2013: $P \neq A_k, S_k \implies b(G) = 2$. H, 2022+: If $P = A_k$, then $b(G) = 2 \iff 2 < k < |T|$.

Part IV

The Saxl graph of a base-two group

(ロ)、(型)、(E)、(E)、 E) の(()

Assume $G \leq \text{Sym}(\Omega)$ is transitive of degree *n* and b(G) = 2. Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Assume $G \leq \text{Sym}(\Omega)$ is transitive of degree *n* and b(G) = 2. Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• G is **Frobenius** $\iff \Sigma(G) \cong \mathbf{K}_n$.

Assume $G \leq \text{Sym}(\Omega)$ is transitive of degree *n* and b(G) = 2. Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$.

e.g. $G = D_{2p}$ and n = p prime.

Assume $G \leq \text{Sym}(\Omega)$ is transitive of degree *n* and b(G) = 2. Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$.

e.g. $G = D_{2p}$ and n = p prime.

• $G = \mathbb{Z}_m \wr \mathbb{Z}_2$ and $n = 2m \implies \Sigma(G) \cong \mathbf{K}_{m,m}$.

Assume $G \leq \text{Sym}(\Omega)$ is transitive of degree *n* and b(G) = 2. Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$.

e.g. $G = D_{2p}$ and n = p prime.

• $G = \mathbb{Z}_m \wr \mathbb{Z}_2$ and $n = 2m \implies \Sigma(G) \cong \mathbf{K}_{m,m}$.

•
$$G = \operatorname{GL}_2(q)$$
 and $\Omega = \mathbb{F}_q^2 \setminus \{0\}$.

Assume $G \leq \text{Sym}(\Omega)$ is transitive of degree *n* and b(G) = 2. Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$.

e.g. $G = D_{2p}$ and n = p prime.

•
$$G = \mathbb{Z}_m \wr \mathbb{Z}_2$$
 and $n = 2m \implies \Sigma(G) \cong \mathbf{K}_{m,m}$.

G = GL₂(q) and Ω = 𝔽²_q \ {0}.
 Note. {α, β} is a base ⇐⇒ {α, β} is a basis for 𝔽²_q.

Assume $G \leq \text{Sym}(\Omega)$ is transitive of degree *n* and b(G) = 2. Burness & Giudici, 2020: Saxl graph $\Sigma(G)$:

vertices Ω , with $\alpha \sim \beta \iff \{\alpha, \beta\}$ is a base.

Example

• G is Frobenius $\iff \Sigma(G) \cong \mathbf{K}_n$.

e.g. $G = D_{2p}$ and n = p prime.

•
$$G = \mathbb{Z}_m \wr \mathbb{Z}_2$$
 and $n = 2m \implies \Sigma(G) \cong \mathbf{K}_{m,m}$.

G = GL₂(q) and Ω = ℝ²_q \ {0}.
Note. {α, β} is a base ⇔ {α, β} is a basis for ℝ²_q.
Hence, Σ(G) ≅ K_{q²-1} - (q + 1)K_{q-1} is complete multipartite.

• $G = PGL_2(q)$ and $\Omega = \{2\text{-subsets of } \{1\text{-spaces in } \mathbb{F}_q^2\}\}.$

G = PGL₂(q) and Ω = {2-subsets of {1-spaces in F_q²}}.
 Note. G_α ≅ D_{2(q-1)} and {α, β} is a base ⇔ |α ∩ β| = 1.

G = PGL₂(q) and Ω = {2-subsets of {1-spaces in F²_q}}.
Note. G_α ≅ D_{2(q-1)} and {α, β} is a base ⇔ |α ∩ β| = 1.
Hence, Σ(G) ≅ J(q + 1, 2) is a Johnson graph.

G = PGL₂(q) and Ω = {2-subsets of {1-spaces in 𝔽²_q}}.
Note. G_α ≅ D_{2(q-1)} and {α, β} is a base ⇔ |α ∩ β| = 1.
Hence, Σ(G) ≅ J(q + 1, 2) is a Johnson graph.

For example, when q = 4 we have the complement of the Petersen.

Valency

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.
Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$. Notes.

• $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.
- $|\Sigma(\alpha)| = r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

• $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

• $|\Sigma(\alpha)| = r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Burness & Giudici, 2020: $|\Sigma(\alpha)| = p$ is a prime iff the following holds:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

•
$$G = \mathbb{Z}_p \wr \mathbb{Z}_2$$
, $n = 2p$ and $\Sigma(G) \cong \mathbf{K}_{p,p}$;

•
$$G = S_3$$
, $n = p + 1 = 3$ and $\Sigma(G) \cong \mathbf{K}_3$;

• $G = AGL_1(2^f)$, $n = p + 1 = 2^f$ and $\Sigma(G) \cong \mathbf{K}_{p+1}$.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

• $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

• $|\Sigma(\alpha)| = r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Burness & Giudici, 2020: $|\Sigma(\alpha)| = p$ is a prime iff the following holds:

•
$$G = \mathbb{Z}_p \wr \mathbb{Z}_2$$
, $n = 2p$ and $\Sigma(G) \cong \mathbf{K}_{p,p}$;

•
$$G = S_3$$
, $n = p + 1 = 3$ and $\Sigma(G) \cong \mathbf{K}_3$;

•
$$G = AGL_1(2^f)$$
, $n = p + 1 = 2^f$ and $\Sigma(G) \cong \mathbf{K}_{p+1}$.

In particular, the Petersen graph is not a Saxl graph.

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

• $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

• $|\Sigma(\alpha)| = r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Burness & Giudici, 2020: $|\Sigma(\alpha)| = p$ is a prime iff the following holds:

•
$$G = \mathbb{Z}_p \wr \mathbb{Z}_2$$
, $n = 2p$ and $\Sigma(G) \cong \mathbf{K}_{p,p}$;

•
$$G = S_3$$
, $n = p + 1 = 3$ and $\Sigma(G) \cong K_3$;

•
$$G = AGL_1(2^f)$$
, $n = p + 1 = 2^f$ and $\Sigma(G) \cong \mathbf{K}_{p+1}$.

In particular, the Petersen graph is not a Saxl graph.

Chen & H, 2022: G almost simple primitive and $|\Sigma(\alpha)|$ prime-power \checkmark

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

• $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

• $|\Sigma(\alpha)| = r(G)|G_{\alpha}|$, where r(G) is the number of regular G_{α} -orbits.

Burness & Giudici, 2020: $|\Sigma(\alpha)| = p$ is a prime iff the following holds:

•
$$G = \mathbb{Z}_p \wr \mathbb{Z}_2$$
, $n = 2p$ and $\Sigma(G) \cong \mathbf{K}_{p,p}$;

•
$$G = S_3$$
, $n = p + 1 = 3$ and $\Sigma(G) \cong \mathbf{K}_3$;

•
$$G = AGL_1(2^f)$$
, $n = p + 1 = 2^f$ and $\Sigma(G) \cong \mathbf{K}_{p+1}$.

In particular, the Petersen graph is not a Saxl graph.

Chen & H, 2022: *G* almost simple primitive and $|\Sigma(\alpha)|$ prime-power \checkmark e.g. $q = 2^{f} + 1$, $G = PGL_{2}(q)$, $G_{\alpha} = D_{2(q-1)}$ and $|\Sigma(\alpha)| = 2^{f+1}$.

Note. $\Sigma(G)$ is the union of the r(G) regular **orbital graphs** of G.

(ロ)、(型)、(E)、(E)、 E) の(()

Note. $\Sigma(G)$ is the union of the r(G) regular **orbital graphs** of G. Thus, $\Sigma(G)$ is a *G*-orbital graph $\iff r(G) = 1$.

Note. $\Sigma(G)$ is the union of the r(G) regular **orbital graphs** of G. Thus, $\Sigma(G)$ is a *G*-orbital graph $\iff r(G) = 1$.

Problem. Classify the finite primitive groups G with r(G) = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note. $\Sigma(G)$ is the union of the r(G) regular **orbital graphs** of G. Thus, $\Sigma(G)$ is a *G*-orbital graph $\iff r(G) = 1$.

Problem. Classify the finite primitive groups G with r(G) = 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Burness & H, 2021+: G almost simple and G_{α} soluble \checkmark

Note. $\Sigma(G)$ is the union of the r(G) regular **orbital graphs** of G. Thus, $\Sigma(G)$ is a *G*-**orbital graph** $\iff r(G) = 1$.

Problem. Classify the finite primitive groups G with r(G) = 1.

- ロ ト - 4 回 ト - 4 □

Burness & H, 2021+: G almost simple and G_{α} soluble \checkmark

e.g. $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$.

Note. G is primitive $\implies \Sigma(G)$ is connected.

Note. G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Note. G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Note. G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$Q(G) = 1 - rac{r(G)|G_{lpha}|}{|\Omega|} = 1 - rac{|\Sigma(lpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G.

Note. G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$Q(G) = 1 - rac{r(G)|G_{lpha}|}{|\Omega|} = 1 - rac{|\Sigma(lpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G. **Recall.** $Q(G) < 1 \iff b(G) \le 2$.

Note. G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$Q(G) = 1 - rac{r(G)|G_{lpha}|}{|\Omega|} = 1 - rac{|\Sigma(lpha)|}{|\Omega|}$$

A D N A 目 N A E N A E N A B N A C N

is the probability that a random pair in Ω is not a base for G. **Recall.** $Q(G) < 1 \iff b(G) \leq 2$. **Note.** $Q(G) < 1/2 \iff |\Sigma(\alpha)| > \frac{1}{2}|\Omega|$

Note. G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$Q(G) = 1 - rac{r(G)|G_{lpha}|}{|\Omega|} = 1 - rac{|\Sigma(lpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G. **Recall.** $Q(G) < 1 \iff b(G) \leq 2$. **Note.** $Q(G) < 1/2 \iff |\Sigma(\alpha)| > \frac{1}{2}|\Omega| \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Note. G is primitive $\implies \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$Q(G) = 1 - rac{r(G)|G_{lpha}|}{|\Omega|} = 1 - rac{|\Sigma(lpha)|}{|\Omega|}$$

is the probability that a random pair in Ω is not a base for G. **Recall.** $Q(G) < 1 \iff b(G) \leq 2$. **Note.** $Q(G) < 1/2 \iff |\Sigma(\alpha)| > \frac{1}{2}|\Omega| \implies \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$. e.g. $p \ge 11$ prime, $(G, H) = (S_p, AGL_1(p)) \implies Q(G) < 1/2$.

Example

If $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \to 1$ as $q \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

If $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

• Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$

Example

If $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

• Chen & Du 2020+; Burness & H, 2021+: soc(G) = L₂(q) ✓

• Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Example

If $G = PGL_2(q)$ and $G_\alpha = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

• Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

Example

If $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

• Chen & Du 2020+; Burness & H, 2021+: soc(G) = L₂(q) ✓

• Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Example

If $G = PGL_2(q)$ and $G_{\alpha} = D_{2(q-1)}$, then $\Sigma(G) = J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

- Chen & Du 2020+; Burness & H, 2021+: $soc(G) = L_2(q) \checkmark$
- Burness & H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α} -orbits.

BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β} -orbits.

Conjecture (Burness & H, 2022+) G primitive and $\alpha, \beta \in \Omega \implies \Sigma(\alpha)$ meets every regular G_{β} -orbit.

• Other invariants of the Saxl graph

• Other invariants of the Saxl graph

Burness & H, 2021+: Results on clique and independence numbers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Other invariants of the Saxl graph
Burness & H, 2021+: Results on clique and independence numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

• Generalisations of Saxl graphs

Other invariants of the Saxl graph
Burness & H, 2021+: Results on clique and independence numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Generalisations of Saxl graphs
- Bases for affine groups

Other invariants of the Saxl graph
Burness & H, 2021+: Results on clique and independence numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Generalisations of Saxl graphs
- Bases for affine groups

Seress 1996: $b(G) \leq 4$ if G is primitive and soluble

Other invariants of the Saxl graph
Burness & H, 2021+: Results on clique and independence numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Generalisations of Saxl graphs
- Bases for affine groups

Seress 1996: $b(G) \leq 4$ if G is primitive and soluble

• Distinguishing numbers for transitive groups

Other invariants of the Saxl graph
Burness & H, 2021+: Results on clique and independence numbers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Generalisations of Saxl graphs
- Bases for affine groups

Seress 1996: $b(G) \leq 4$ if G is primitive and soluble

Distinguishing numbers for transitive groups
Seress 1996: D(G) ≤ 5 if G is soluble

Thank you!