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Automorphisms

Throughout, everything is finite.

Let Γ = (VΓ,EΓ) be a simple graph.

Automorphism: g ∈ Sym(VΓ) such that v ∼ w ⇐⇒ vg ∼ wg .

Automorphism group Aut(Γ): The group of all the automorphisms.

Γ = Kn =⇒ Aut(Γ) ∼= Sn

Γ = Cn (n > 3) =⇒ Aut(Γ) ∼= D2n

How can we “break” the symmetries of a graph?

Colouring vertices (setwise)

Fixing vertices (pointwise)
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Part I

Distinguishing numbers for groups and graphs



Colourings
Consider Γ = C5, where we have Aut(Γ) ∼= D10.

Which automorphisms preserve the following colourings?

C1 = C2 =

C3 = C4 =

Aut(Γ,C1) ∼= Aut(Γ,C2) ∼= Aut(Γ,C3) ∼= Z2, and Aut(Γ,C4) = 1.

Distinguishing colouring: A colouring C of Γ such that Aut(Γ,C ) = 1.

Distinguishing number D(Γ): The minimal number of colours in a distin-
guishing colouring of Γ. (e.g. D(C5) = 3.)
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Some results

Klavžar, Wong & Zhu, 2006:

D(Γ) 6 the maximal degree of Γ, unless Γ ∼= Kn, Kn,n or C5.

Remark. D(Kn) = n; D(Kn,n) = n + 1; D(Cn) = 2 if n > 6.

Praeger, 1993; Devillers, Harper & Morgan, 2019:

If Γ is 2-arc-transitive, then one of the following holds.

Γ is complete;

Γ is bipartite;

D(Γ) = 2;

Γ ∼= C5, K32K3, Petersen or its complement.
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Partitions

Note. A colouring is a partition of vertices.

Let G 6 Sym(Ω) be a transitive permutation group of degree n.

Distinguishing partition: A partition Π = {π1, . . . , πm} of Ω such that

m⋂
i=1

G{πi} = 1.

Distinguishing number D(G ): The minimal size of a dist. partition.

Remark. D(Γ) = D(Aut(Γ)), so D(D10) = 3 and D(D2n) = 2 for n > 6.

Examples

D(Sn) = n; D(An) = n − 1.

D(G ) = 1 ⇐⇒ G = 1.

G 6= 1 is regular =⇒ D(G ) = 2.
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Primitive groups

Note. The following statements are equivalent.

D(G ) = 2;

G has a regular orbit on the power set P(Ω) of Ω;

∃ ∆ ⊆ Ω such that G{∆} = 1.

G is called primitive if Gα is maximal in G .

Theorem (Cameron, Neumann & Saxl, 1984; Seress, 1997)

G 6= An,Sn primitive =⇒ D(G ) = 2, with 43 exceptions of degree 6 32.

Dolfi, 2000: D(G ) 6 4 for each exception.
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Part II

Bases for permutation groups



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂
α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂
α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂
α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂
α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂
α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂
α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂
α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.



Fixing sets

Which automorphisms of Γ = C5 survive if we “pin” each coloured vertex?

Fixing (determining) set: A subset ∆ ⊆ VΓ such that
⋂
α∈∆ Aut(Γ)α = 1.

Fixing (determining) number fix(Γ): The minimal size of such a ∆.

Γ = Kn =⇒ fix(Γ) = n − 1.

Γ = Cn =⇒ fix(Γ) = 2.

Aut(Γ) = 1 ⇐⇒ fix(Γ) = 0.

D(Γ) 6 fix(Γ) + 1.



Bases

Let G 6 Sym(Ω) be a transitive permutation group.

Base: A subset ∆ ⊆ Ω such that G(∆) =
⋂
α∈∆ Gα = 1.

Base size b(G ): The minimal size of a base for G .

Remark. fix(Γ) = b(Aut(Γ)).

G = Sn, Ω = {1, . . . , n} =⇒ b(G ) = n − 1.

G = D2n (n > 3), Ω = {1, . . . , n} =⇒ b(G ) = 2.

b(G ) = 0 ⇐⇒ G = 1.

D(G ) 6 b(G ) + 1.

G = GLd(q), Ω = Fd
q \ {0} =⇒ b(G ) = d .

Klavžar, Wong & Zhu, 2006: D(G ) = 2 if Fd
q 6= F2

2, F3
2, F2

4 or F2
3.
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Base sizes

Observation: If ∆ is a base and x , y ∈ G ,

then

αx = αy for all α ∈ ∆ ⇐⇒ xy−1 ∈
⋂
α∈∆

Gα = G(∆) ⇐⇒ x = y .

That is, each group element is uniquely determined by its action on ∆.

|G | 6 nb(G)

A small base ∆ provides an efficient way to store the elements of G ,
using |∆|-tuples rather than |Ω|-tuples.

Question: How small is b(G )?

Note. b(G ) = 1 ⇐⇒ G 6= 1 is regular.
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Part III

The base-two project



Base-two groups

Let G 6 Sym(Ω) be transitive of degree n with point stabiliser H = Gα.

b(G ) = 2 ⇐⇒ H 6= 1 has a regular orbit on Ω

⇐⇒ H 6= 1 & H ∩ Hg = 1 for some g ∈ G

Recall. G is called primitive if H is maximal in G .

Problem. Classify the finite primitive groups G with b(G ) = 2.

Example

p prime, G = D2p and Ω = {1, . . . , p} =⇒ G primitive and b(G ) = 2.
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Probabilistic methods
Let

Q(G ) =
|{(α, β) ∈ Ω2 : Gα ∩ Gβ 6= 1}|

|Ω|2

be the probability that a random pair in Ω is not a base for G .

Note. {α, β} is not a base iff there exists x ∈ Gα ∩ Gβ of prime order.

The probability that a random pair is fixed by x ∈ G is fpr(x)2, where

fpr(x) =
|CΩ(x)|
|Ω|

=
|xG ∩ H|
|xG |

is the fixed point ratio of x . Therefore,

Q(G ) 6
∑
x∈P

fpr(x)2 =
∑
i

|xGi | fpr(x)2 =: Q̂(G ),

where P =
⋃

i x
G
i is the set of elements of prime order in G .

Probabilistic method: Q̂(G ) < 1 =⇒ b(G ) 6 2.
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An example
We have b(G ) 6 2 if

Q̂(G ) =
∑
i

|xGi | fpr(x)2 =
∑
i

|xGi ∩ H|2

|xGi |
< 1,

where P =
⋃

i x
G
i is the set of elements of prime order in G .

Note. If
∑

i |xGi ∩ H| 6 A and |xGi | > B for all i , then Q̂(G ) 6 A2/B.

Example

Let p > 11 be a prime, G = Sp and H = AGL1(p). Note that we have∑
i |xGi ∩ H| 6 |H| = p(p − 1) =: A.

If |xi | = p then |xGi | = (p − 1)!, and if xi has cycle shape [1, r (p−1)/r ] then

|xGi | =
p!

r (p−1)/r (p−1
r )!

>
p!

2(p−1)/2(p−1
2 )!

=: B.

It is easy to see that A2/B → 0, so Q̂(G )→ 0 and b(G ) 6 2.
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Some results

The O’Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: Partial classification in the setting H/Z (H) is simple.

Twisted wreath type: Partial results (Fawcett, 2022)

Almost simple: T P G 6 Aut(T ) for non-abelian simple T .

Burness et al., 2010/11: T alternating or sporadic X

G Lie type: Partial answers

Product type: G 6 LoP with its product action on Σk , where L 6 Sym(Σ).

Bailey & Cameron, 2011:

b(L o P) = 2 ⇐⇒ Lσ has at least D(P) regular orbits on Σ.

Burness & H, 2022+: Progress where G < L o P
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Diagonal type

Diagonal type: T k P G 6 T k .(Out(T )× P), P is primitive or P = A2.

Write Ω = T k/D, where D = {(t, . . . , t) : t ∈ T} and set α = D, so

Gα = G ∩ {(a, . . . , a)π : a ∈ Aut(T ), π ∈ P}.

Note. If k > 32 and P 6= Ak ,Sk then D(P) = 2, so there exists a
distinguishing partition [k] = ∆1 ∪∆2 ∪∆3 of distinct sizes.

Write T = 〈x , y〉 and β = D(t1, . . . , tk) ∈ Ω, where

ti = 1 if i ∈ ∆1, ti = x if i ∈ ∆2, ti = y if i ∈ ∆3.

Suppose g = (a, . . . , a)π ∈ Gα ∩ Gβ. Then π = 1 since π preserves [k] =
∆1 ∪∆2 ∪∆3. Thus, a ∈ CAut(T )(x) ∩ CAut(T )(y) = 1 and so g = 1.

Fawcett, 2013: P 6= Ak ,Sk =⇒ b(G ) = 2.

H, 2022+: If P = Ak , then b(G ) = 2 ⇐⇒ 2 < k < |T |.
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Part IV

The Saxl graph of a base-two group



Saxl graphs

Assume G 6 Sym(Ω) is transitive of degree n and b(G ) = 2.

Burness & Giudici, 2020: Saxl graph Σ(G ):

vertices Ω, with α ∼ β ⇐⇒ {α, β} is a base.

Example

G is Frobenius ⇐⇒ Σ(G ) ∼= Kn.

e.g. G = D2p and n = p prime.

G = Zm o Z2 and n = 2m =⇒ Σ(G ) ∼= Km,m.

G = GL2(q) and Ω = F2
q \ {0}.

Note. {α, β} is a base ⇐⇒ {α, β} is a basis for F2
q.

Hence, Σ(G ) ∼= Kq2−1 − (q + 1)Kq−1 is complete multipartite.
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Further example

G = PGL2(q) and Ω = {2-subsets of {1-spaces in F2
q}}.

Note. Gα ∼= D2(q−1) and {α, β} is a base ⇐⇒ |α ∩ β| = 1.

Hence, Σ(G ) ∼= J(q + 1, 2) is a Johnson graph.

For example, when q = 4 we have the complement of the Petersen.
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Valency

Let Σ(α) be the set of neighbours of α in Σ(G ).

Notes.

Σ(α) is the union of regular Gα-orbits.

|Σ(α)| = r(G )|Gα|, where r(G ) is the number of regular Gα-orbits.

Burness & Giudici, 2020: |Σ(α)| = p is a prime iff the following holds:

G = Zp o Z2, n = 2p and Σ(G ) ∼= Kp,p;

G = S3, n = p + 1 = 3 and Σ(G ) ∼= K3;

G = AGL1(2f ), n = p + 1 = 2f and Σ(G ) ∼= Kp+1.

In particular, the Petersen graph is not a Saxl graph.

Chen & H, 2022: G almost simple primitive and |Σ(α)| prime-power X

e.g. q = 2f + 1, G = PGL2(q), Gα = D2(q−1) and |Σ(α)| = 2f +1.
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Orbital graphs

Note. Σ(G ) is the union of the r(G ) regular orbital graphs of G .

Thus, Σ(G ) is a G -orbital graph ⇐⇒ r(G ) = 1.

Problem. Classify the finite primitive groups G with r(G ) = 1.

Burness & H, 2021+: G almost simple and Gα soluble X
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Connectedness
Note. G is primitive =⇒ Σ(G ) is connected.

Question: What is the diameter of Σ(G ) if G is primitive?

Conjecture (Burness & Giudici, 2020)

G primitive and α, β ∈ Ω =⇒ Σ(α) ∩ Σ(β) 6= ∅.

Recall that

Q(G ) = 1− r(G )|Gα|
|Ω|

= 1− |Σ(α)|
|Ω|

is the probability that a random pair in Ω is not a base for G .

Recall. Q(G ) < 1 ⇐⇒ b(G ) 6 2.

Note. Q(G ) < 1/2 ⇐⇒ |Σ(α)| > 1
2 |Ω| =⇒ Σ(α) ∩ Σ(β) 6= ∅.

e.g. p > 11 prime, (G ,H) = (Sp,AGL1(p)) =⇒ Q(G ) < 1/2.
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Burness-Giudici conjecture

Example

If G = PGL2(q) and Gα = D2(q−1), then Σ(G ) = J(q + 1, 2) has the
common neighbour property, though Q(G )→ 1 as q →∞.

Some other evidence:

Chen & Du 2020+; Burness & H, 2021+: soc(G ) = L2(q) X

Burness & H, 2021+: G almost simple with Gα soluble X

Recall. Σ(α) is the union of regular Gα-orbits.

BG conjecture: Σ(α) meets the union of regular Gβ-orbits.

Conjecture (Burness & H, 2022+)

G primitive and α, β ∈ Ω =⇒ Σ(α) meets every regular Gβ-orbit.
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Future work

Other invariants of the Saxl graph

Burness & H, 2021+: Results on clique and independence numbers

Generalisations of Saxl graphs

Bases for affine groups

Seress 1996: b(G ) 6 4 if G is primitive and soluble

Distinguishing numbers for transitive groups

Seress 1996: D(G ) 6 5 if G is soluble
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Thank you!


