Bases, distinguishing partitions and probabilistic methods

Hong Yi Huang

Discrete Structures and Algorithms Seminar
University of Melbourne
18 August 2022

Automorphisms

Throughout, everything is finite.

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple graph.

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple graph .
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut (Γ) : The group of all the automorphisms.

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut (Γ) : The group of all the automorphisms.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{Aut}(\Gamma) \cong S_{n}$

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut (Γ) : The group of all the automorphisms.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{Aut}(\Gamma) \cong S_{n}$
- $\Gamma=\mathbf{C}_{n}(n \geqslant 3) \Longrightarrow \operatorname{Aut}(\Gamma) \cong D_{2 n}$

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple graph.
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut (Γ) : The group of all the automorphisms.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{Aut}(\Gamma) \cong S_{n}$
- $\Gamma=\mathbf{C}_{n}(n \geqslant 3) \Longrightarrow \operatorname{Aut}(\Gamma) \cong D_{2 n}$

How can we "break" the symmetries of a graph?

Automorphisms

Throughout, everything is finite.
Let $\Gamma=(V \Gamma, E \Gamma)$ be a simple graph .
Automorphism: $g \in \operatorname{Sym}(V \Gamma)$ such that $v \sim w \Longleftrightarrow v^{g} \sim w^{g}$.
Automorphism group Aut(Γ): The group of all the automorphisms.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{Aut}(\Gamma) \cong S_{n}$
- $\Gamma=\mathbf{C}_{n}(n \geqslant 3) \Longrightarrow \operatorname{Aut}(\Gamma) \cong D_{2 n}$

How can we "break" the symmetries of a graph?

- Colouring vertices (setwise)
- Fixing vertices (pointwise)

Part I

Distinguishing numbers for groups and graphs

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

- $\operatorname{Aut}\left(\Gamma, C_{1}\right) \cong \operatorname{Aut}\left(\Gamma, C_{2}\right) \cong \operatorname{Aut}\left(\Gamma, C_{3}\right) \cong \mathbb{Z}_{2}$, and $\operatorname{Aut}\left(\Gamma, C_{4}\right)=1$.

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

- $\operatorname{Aut}\left(\Gamma, C_{1}\right) \cong \operatorname{Aut}\left(\Gamma, C_{2}\right) \cong \operatorname{Aut}\left(\Gamma, C_{3}\right) \cong \mathbb{Z}_{2}$, and $\operatorname{Aut}\left(\Gamma, C_{4}\right)=1$.

Distinguishing colouring: A colouring C of Γ such that $\operatorname{Aut}(\Gamma, C)=1$.

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

- $\operatorname{Aut}\left(\Gamma, C_{1}\right) \cong \operatorname{Aut}\left(\Gamma, C_{2}\right) \cong \operatorname{Aut}\left(\Gamma, C_{3}\right) \cong \mathbb{Z}_{2}$, and $\operatorname{Aut}\left(\Gamma, C_{4}\right)=1$.

Distinguishing colouring: A colouring C of Γ such that $\operatorname{Aut}(\Gamma, C)=1$.
Distinguishing number $D(\Gamma)$: The minimal number of colours in a distinguishing colouring of Γ.

Colourings

Consider $\Gamma=\mathbf{C}_{5}$, where we have $\operatorname{Aut}(\Gamma) \cong D_{10}$.
Which automorphisms preserve the following colourings?

- $\operatorname{Aut}\left(\Gamma, C_{1}\right) \cong \operatorname{Aut}\left(\Gamma, C_{2}\right) \cong \operatorname{Aut}\left(\Gamma, C_{3}\right) \cong \mathbb{Z}_{2}$, and $\operatorname{Aut}\left(\Gamma, C_{4}\right)=1$.

Distinguishing colouring: A colouring C of Γ such that $\operatorname{Aut}(\Gamma, C)=1$.
Distinguishing number $D(\Gamma)$: The minimal number of colours in a distinguishing colouring of Γ. (e.g. $D\left(\mathbf{C}_{5}\right)=3$.)

Some results

Klavžar, Wong \& Zhu, 2006:
$D(\Gamma) \leqslant$ the maximal degree of Γ, unless $\Gamma \cong \mathbf{K}_{n}, \mathbf{K}_{n, n}$ or \mathbf{C}_{5}.

Some results

Klavžar, Wong \& Zhu, 2006:
$D(\Gamma) \leqslant$ the maximal degree of Γ, unless $\Gamma \cong \mathbf{K}_{n}, \mathbf{K}_{n, n}$ or \mathbf{C}_{5}.
Remark. $D\left(\mathbf{K}_{n}\right)=n ; D\left(\mathbf{K}_{n, n}\right)=n+1 ; D\left(\mathbf{C}_{n}\right)=2$ if $n \geqslant 6$.

Some results

Klavžar, Wong \& Zhu, 2006:
$D(\Gamma) \leqslant$ the maximal degree of Γ, unless $\Gamma \cong \mathbf{K}_{n}, \mathbf{K}_{n, n}$ or \mathbf{C}_{5}.
Remark. $D\left(\mathbf{K}_{n}\right)=n ; D\left(\mathbf{K}_{n, n}\right)=n+1 ; D\left(\mathbf{C}_{n}\right)=2$ if $n \geqslant 6$.
Praeger, 1993; Devillers, Harper \& Morgan, 2019:
If Γ is 2 -arc-transitive, then one of the following holds.

- 「 is complete;
- Γ is bipartite;
- $D(\Gamma)=2$;
- $\Gamma \cong \mathbf{C}_{5}, \mathbf{K}_{3} \square \mathbf{K}_{3}$, Petersen or its complement.

Partitions

Note. A colouring is a partition of vertices.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Examples

- $D\left(S_{n}\right)=n$

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Examples

- $D\left(S_{n}\right)=n ; D\left(A_{n}\right)=n-1$.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Examples

- $D\left(S_{n}\right)=n ; D\left(A_{n}\right)=n-1$.
- $D(G)=1 \Longleftrightarrow G=1$.

Partitions

Note. A colouring is a partition of vertices.
Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group of degree n.
Distinguishing partition: A partition $\Pi=\left\{\pi_{1}, \ldots, \pi_{m}\right\}$ of Ω such that

$$
\bigcap_{i=1}^{m} G_{\left\{\pi_{i}\right\}}=1
$$

Distinguishing number $D(G)$: The minimal size of a dist. partition. Remark. $D(\Gamma)=D(\operatorname{Aut}(\Gamma))$, so $D\left(D_{10}\right)=3$ and $D\left(D_{2 n}\right)=2$ for $n \geqslant 6$.

Examples

- $D\left(S_{n}\right)=n ; D\left(A_{n}\right)=n-1$.
- $D(G)=1 \Longleftrightarrow G=1$.
- $G \neq 1$ is regular $\Longrightarrow D(G)=2$.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.
Theorem (Cameron, Neumann \& Saxl, 1984; Seress, 1997)
$G \neq A_{n}, S_{n}$ primitive $\Longrightarrow D(G)=2$

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.
Theorem (Cameron, Neumann \& Saxl, 1984; Seress, 1997)
$G \neq A_{n}, S_{n}$ primitive $\Longrightarrow D(G)=2$, with 43 exceptions of degree $\leqslant 32$.

Primitive groups

Note. The following statements are equivalent.

- $D(G)=2$;
- G has a regular orbit on the power set $\mathcal{P}(\Omega)$ of Ω;
- $\exists \Delta \subseteq \Omega$ such that $G_{\{\Delta\}}=1$.
G is called primitive if G_{α} is maximal in G.
Theorem (Cameron, Neumann \& Saxl, 1984; Seress, 1997)
$G \neq A_{n}, S_{n}$ primitive $\Longrightarrow D(G)=2$, with 43 exceptions of degree $\leqslant 32$.

Dolfi, 2000: $D(G) \leqslant 4$ for each exception.

Part II

Bases for permutation groups

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=n-1$.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=n-1$.
- $\Gamma=\mathbf{C}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=2$.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=n-1$.
- $\Gamma=\mathbf{C}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=2$.
- $\operatorname{Aut}(\Gamma)=1 \Longleftrightarrow \operatorname{fix}(\Gamma)=0$.

Fixing sets

Which automorphisms of $\Gamma=\mathbf{C}_{5}$ survive if we "pin" each coloured vertex?

Fixing (determining) set: A subset $\Delta \subseteq V \Gamma$ such that $\bigcap_{\alpha \in \Delta} \operatorname{Aut}(\Gamma)_{\alpha}=1$.
Fixing (determining) number fix (Γ) : The minimal size of such a Δ.

- $\Gamma=\mathbf{K}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=n-1$.
- $\Gamma=\mathbf{C}_{n} \Longrightarrow \operatorname{fix}(\Gamma)=2$.
- $\operatorname{Aut}(\Gamma)=1 \Longleftrightarrow \operatorname{fix}(\Gamma)=0$.
- $D(\Gamma) \leqslant \operatorname{fix}(\Gamma)+1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. fix $(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. $\operatorname{fix}(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. fix $(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. fix $(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.
- $b(G)=0 \Longleftrightarrow G=1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. $\mathrm{fix}(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.
- $b(G)=0 \Longleftrightarrow G=1$.
- $D(G) \leqslant b(G)+1$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. $\mathrm{fix}(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.
- $b(G)=0 \Longleftrightarrow G=1$.
- $D(G) \leqslant b(G)+1$.
- $G=G L_{d}(q), \Omega=\mathbb{F}_{q}^{d} \backslash\{0\} \Longrightarrow b(G)=d$.

Bases

Let $G \leqslant \operatorname{Sym}(\Omega)$ be a transitive permutation group.
Base: A subset $\Delta \subseteq \Omega$ such that $G_{(\Delta)}=\bigcap_{\alpha \in \Delta} G_{\alpha}=1$.
Base size $b(G)$: The minimal size of a base for G.
Remark. $\mathrm{fix}(\Gamma)=b(\operatorname{Aut}(\Gamma))$.

- $G=S_{n}, \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=n-1$.
- $G=D_{2 n}(n \geqslant 3), \Omega=\{1, \ldots, n\} \Longrightarrow b(G)=2$.
- $b(G)=0 \Longleftrightarrow G=1$.
- $D(G) \leqslant b(G)+1$.
- $G=G L_{d}(q), \Omega=\mathbb{F}_{q}^{d} \backslash\{0\} \Longrightarrow b(G)=d$.

Klavžar, Wong \& Zhu, 2006: $D(G)=2$ if $\mathbb{F}_{q}^{d} \neq \mathbb{F}_{2}^{2}, \mathbb{F}_{2}^{3}, \mathbb{F}_{4}^{2}$ or \mathbb{F}_{3}^{2}.

Base sizes

Observation: If Δ is a base and $x, y \in G$,

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)}
$$

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

- $|G| \leqslant n^{b(G)}$

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

- $|G| \leqslant n^{b(G)}$
- A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$-tuples rather than $|\Omega|$-tuples.

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

- $|G| \leqslant n^{b(G)}$
- A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$-tuples rather than $|\Omega|$-tuples.

Question: How small is $b(G)$?

Base sizes

Observation: If Δ is a base and $x, y \in G$, then

$$
\alpha^{x}=\alpha^{y} \text { for all } \alpha \in \Delta \Longleftrightarrow x y^{-1} \in \bigcap_{\alpha \in \Delta} G_{\alpha}=G_{(\Delta)} \Longleftrightarrow x=y
$$

That is, each group element is uniquely determined by its action on Δ.

- $|G| \leqslant n^{b(G)}$
- A small base Δ provides an efficient way to store the elements of G, using $|\Delta|$-tuples rather than $|\Omega|$-tuples.

Question: How small is $b(G)$?
Note. $b(G)=1 \Longleftrightarrow G \neq 1$ is regular.

Part III

The base-two project

Base-two groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be transitive of degree n with point stabiliser $H=G_{\alpha}$.

Base-two groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be transitive of degree n with point stabiliser $H=G_{\alpha}$.

$$
\begin{aligned}
b(G)=2 & \Longleftrightarrow H \neq 1 \text { has a regular orbit on } \Omega \\
& \Longleftrightarrow H \neq 1 \& H \cap H^{g}=1 \text { for some } g \in G
\end{aligned}
$$

Base-two groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be transitive of degree n with point stabiliser $H=G_{\alpha}$.

$$
\begin{aligned}
b(G)=2 & \Longleftrightarrow H \neq 1 \text { has a regular orbit on } \Omega \\
& \Longleftrightarrow H \neq 1 \& H \cap H^{g}=1 \text { for some } g \in G
\end{aligned}
$$

Recall. G is called primitive if H is maximal in G.

Base-two groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be transitive of degree n with point stabiliser $H=G_{\alpha}$.

$$
\begin{aligned}
b(G)=2 & \Longleftrightarrow H \neq 1 \text { has a regular orbit on } \Omega \\
& \Longleftrightarrow H \neq 1 \& H \cap H^{g}=1 \text { for some } g \in G
\end{aligned}
$$

Recall. G is called primitive if H is maximal in G.

Problem. Classify the finite primitive groups G with $b(G)=2$.

Base-two groups

Let $G \leqslant \operatorname{Sym}(\Omega)$ be transitive of degree n with point stabiliser $H=G_{\alpha}$.

$$
\begin{aligned}
b(G)=2 & \Longleftrightarrow H \neq 1 \text { has a regular orbit on } \Omega \\
& \Longleftrightarrow H \neq 1 \& H \cap H^{g}=1 \text { for some } g \in G
\end{aligned}
$$

Recall. G is called primitive if H is maximal in G.

Problem. Classify the finite primitive groups G with $b(G)=2$.

Example

p prime, $G=D_{2 p}$ and $\Omega=\{1, \ldots, p\} \Longrightarrow G$ primitive and $b(G)=2$.

Probabilistic methods

Let

$$
Q(G)=\frac{\left|\left\{(\alpha, \beta) \in \Omega^{2}: G_{\alpha} \cap G_{\beta} \neq 1\right\}\right|}{|\Omega|^{2}}
$$

be the probability that a random pair in Ω is not a base for G.

Probabilistic methods

Let

$$
Q(G)=\frac{\left|\left\{(\alpha, \beta) \in \Omega^{2}: G_{\alpha} \cap G_{\beta} \neq 1\right\}\right|}{|\Omega|^{2}}
$$

be the probability that a random pair in Ω is not a base for G.
Note. $\{\alpha, \beta\}$ is not a base iff there exists $x \in G_{\alpha} \cap G_{\beta}$ of prime order.

Probabilistic methods

Let

$$
Q(G)=\frac{\left|\left\{(\alpha, \beta) \in \Omega^{2}: G_{\alpha} \cap G_{\beta} \neq 1\right\}\right|}{|\Omega|^{2}}
$$

be the probability that a random pair in Ω is not a base for G.
Note. $\{\alpha, \beta\}$ is not a base iff there exists $x \in G_{\alpha} \cap G_{\beta}$ of prime order.
The probability that a random pair is fixed by $x \in G$ is $\operatorname{fpr}(x)^{2}$, where

$$
\operatorname{fpr}(x)=\frac{\left|C_{\Omega}(x)\right|}{|\Omega|}=\frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

is the fixed point ratio of x.

Probabilistic methods

Let

$$
Q(G)=\frac{\left|\left\{(\alpha, \beta) \in \Omega^{2}: G_{\alpha} \cap G_{\beta} \neq 1\right\}\right|}{|\Omega|^{2}}
$$

be the probability that a random pair in Ω is not a base for G.
Note. $\{\alpha, \beta\}$ is not a base iff there exists $x \in G_{\alpha} \cap G_{\beta}$ of prime order.
The probability that a random pair is fixed by $x \in G$ is $\operatorname{fpr}(x)^{2}$, where

$$
\operatorname{fpr}(x)=\frac{\left|C_{\Omega}(x)\right|}{|\Omega|}=\frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

is the fixed point ratio of x. Therefore,

$$
Q(G) \leqslant \sum_{x \in \mathcal{P}} \mathrm{fpr}(x)^{2}=\sum_{i}\left|x_{i}^{G}\right| \operatorname{fpr}(x)^{2}=: \widehat{Q}(G)
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.

Probabilistic methods

Let

$$
Q(G)=\frac{\left|\left\{(\alpha, \beta) \in \Omega^{2}: G_{\alpha} \cap G_{\beta} \neq 1\right\}\right|}{|\Omega|^{2}}
$$

be the probability that a random pair in Ω is not a base for G.
Note. $\{\alpha, \beta\}$ is not a base iff there exists $x \in G_{\alpha} \cap G_{\beta}$ of prime order.
The probability that a random pair is fixed by $x \in G$ is $\operatorname{fpr}(x)^{2}$, where

$$
\operatorname{fpr}(x)=\frac{\left|C_{\Omega}(x)\right|}{|\Omega|}=\frac{\left|x^{G} \cap H\right|}{\left|x^{G}\right|}
$$

is the fixed point ratio of x. Therefore,

$$
Q(G) \leqslant \sum_{x \in \mathcal{P}} \mathrm{fpr}(x)^{2}=\sum_{i}\left|x_{i}^{G}\right| \operatorname{fpr}(x)^{2}=: \widehat{Q}(G)
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.
Probabilistic method: $\widehat{Q}(G)<1 \Longrightarrow b(G) \leqslant 2$.

An example

We have $b(G) \leqslant 2$ if

$$
\widehat{Q}(G)=\sum_{i}\left|x_{i}^{G}\right| \operatorname{fpr}(x)^{2}=\sum_{i} \frac{\left|x_{i}^{G} \cap H\right|^{2}}{\left|x_{i}^{G}\right|}<1,
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.

An example

We have $b(G) \leqslant 2$ if

$$
\widehat{Q}(G)=\sum_{i}\left|x_{i}^{G}\right| \operatorname{fpr}(x)^{2}=\sum_{i} \frac{\left|x_{i}^{G} \cap H\right|^{2}}{\left|x_{i}^{G}\right|}<1,
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.
Note. If $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant A$ and $\left|x_{i}^{G}\right| \geqslant B$ for all i, then $\widehat{Q}(G) \leqslant A^{2} / B$.

An example
We have $b(G) \leqslant 2$ if

$$
\widehat{Q}(G)=\sum_{i}\left|x_{i}^{G}\right| f \operatorname{pr}(x)^{2}=\sum_{i} \frac{\left|x_{i}^{G} \cap H\right|^{2}}{\left|x_{i}^{G}\right|}<1,
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.
Note. If $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant A$ and $\left|x_{i}^{G}\right| \geqslant B$ for all i, then $\widehat{Q}(G) \leqslant A^{2} / B$.
Example
Let $p \geqslant 11$ be a prime, $G=S_{p}$ and $H=\operatorname{AGL}_{1}(p)$.

An example

We have $b(G) \leqslant 2$ if

$$
\widehat{Q}(G)=\sum_{i}\left|x_{i}^{G}\right| \operatorname{fpr}(x)^{2}=\sum_{i} \frac{\left|x_{i}^{G} \cap H\right|^{2}}{\left|x_{i}^{G}\right|}<1,
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.
Note. If $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant A$ and $\left|x_{i}^{G}\right| \geqslant B$ for all i, then $\widehat{Q}(G) \leqslant A^{2} / B$.

Example

Let $p \geqslant 11$ be a prime, $G=S_{p}$ and $H=\operatorname{AGL}_{1}(p)$. Note that we have $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant|H|=p(p-1)=: A$.

An example

We have $b(G) \leqslant 2$ if

$$
\widehat{Q}(G)=\sum_{i}\left|x_{i}^{G}\right| \operatorname{fpr}(x)^{2}=\sum_{i} \frac{\left|x_{i}^{G} \cap H\right|^{2}}{\left|x_{i}^{G}\right|}<1,
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.
Note. If $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant A$ and $\left|x_{i}^{G}\right| \geqslant B$ for all i, then $\widehat{Q}(G) \leqslant A^{2} / B$.

Example

Let $p \geqslant 11$ be a prime, $G=S_{p}$ and $H=\operatorname{AGL}_{1}(p)$. Note that we have $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant|H|=p(p-1)=: A$.
If $\left|x_{i}\right|=p$ then $\left|x_{i}^{G}\right|=(p-1)$!,

An example

We have $b(G) \leqslant 2$ if

$$
\widehat{Q}(G)=\sum_{i}\left|x_{i}^{G}\right| \operatorname{fpr}(x)^{2}=\sum_{i} \frac{\left|x_{i}^{G} \cap H\right|^{2}}{\left|x_{i}^{G}\right|}<1,
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.
Note. If $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant A$ and $\left|x_{i}^{G}\right| \geqslant B$ for all i, then $\widehat{Q}(G) \leqslant A^{2} / B$.

Example

Let $p \geqslant 11$ be a prime, $G=S_{p}$ and $H=\operatorname{AGL}_{1}(p)$. Note that we have $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant|H|=p(p-1)=: A$.
If $\left|x_{i}\right|=p$ then $\left|x_{i}^{G}\right|=(p-1)!$, and if x_{i} has cycle shape $\left[1, r^{(p-1) / r}\right]$ then

$$
\left|x_{i}^{G}\right|=\frac{p!}{r^{(p-1) / r}\left(\frac{p-1}{r}\right)!} \geqslant \frac{p!}{2^{(p-1) / 2}\left(\frac{p-1}{2}\right)!}=: B .
$$

An example

We have $b(G) \leqslant 2$ if

$$
\widehat{Q}(G)=\sum_{i}\left|x_{i}^{G}\right| \operatorname{fpr}(x)^{2}=\sum_{i} \frac{\left|x_{i}^{G} \cap H\right|^{2}}{\left|x_{i}^{G}\right|}<1,
$$

where $\mathcal{P}=\bigcup_{i} x_{i}^{G}$ is the set of elements of prime order in G.
Note. If $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant A$ and $\left|x_{i}^{G}\right| \geqslant B$ for all i, then $\widehat{Q}(G) \leqslant A^{2} / B$.

Example

Let $p \geqslant 11$ be a prime, $G=S_{p}$ and $H=\operatorname{AGL}_{1}(p)$. Note that we have $\sum_{i}\left|x_{i}^{G} \cap H\right| \leqslant|H|=p(p-1)=: A$.
If $\left|x_{i}\right|=p$ then $\left|x_{i}^{G}\right|=(p-1)!$, and if x_{i} has cycle shape $\left[1, r^{(p-1) / r}\right]$ then

$$
\left|x_{i}^{G}\right|=\frac{p!}{r^{(p-1) / r}\left(\frac{p-1}{r}\right)!} \geqslant \frac{p!}{2^{(p-1) / 2}\left(\frac{p-1}{2}\right)!}=: B .
$$

It is easy to see that $A^{2} / B \rightarrow 0$, so $\widehat{Q}(G) \rightarrow 0$ and $b(G) \leqslant 2$.

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types. Affine: Partial classification in the setting $H / Z(H)$ is simple.

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.
Affine: Partial classification in the setting $H / Z(H)$ is simple.
Twisted wreath type: Partial results (Fawcett, 2022)

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.
Affine: Partial classification in the setting $H / Z(H)$ is simple.
Twisted wreath type: Partial results (Fawcett, 2022)
Almost simple: $T \geqq G \leqslant \operatorname{Aut}(T)$ for non-abelian simple T.

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types. Affine: Partial classification in the setting $H / Z(H)$ is simple. Twisted wreath type: Partial results (Fawcett, 2022) Almost simple: $T \Downarrow G \leqslant \operatorname{Aut}(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic \checkmark

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.
Affine: Partial classification in the setting $H / Z(H)$ is simple.
Twisted wreath type: Partial results (Fawcett, 2022)
Almost simple: $T \geqq G \leqslant \operatorname{Aut}(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic \checkmark
- G Lie type: Partial answers

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.
Affine: Partial classification in the setting $H / Z(H)$ is simple.
Twisted wreath type: Partial results (Fawcett, 2022)
Almost simple: $T \geqq G \leqslant \operatorname{Aut}(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic \checkmark
- G Lie type: Partial answers

Product type: $G \leqslant L\left\langle P\right.$ with its product action on Σ^{k}, where $L \leqslant \operatorname{Sym}(\Sigma)$.

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.
Affine: Partial classification in the setting $H / Z(H)$ is simple.
Twisted wreath type: Partial results (Fawcett, 2022)
Almost simple: $T \geqq G \leqslant \operatorname{Aut}(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic \checkmark
- G Lie type: Partial answers

Product type: $G \leqslant L\rangle P$ with its product action on Σ^{k}, where $L \leqslant \operatorname{Sym}(\Sigma)$. Bailey \& Cameron, 2011:

$$
b(L \text { l } P)=2 \Longleftrightarrow L_{\sigma} \text { has at least } D(P) \text { regular orbits on } \Sigma .
$$

Some results

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.
Affine: Partial classification in the setting $H / Z(H)$ is simple.
Twisted wreath type: Partial results (Fawcett, 2022)
Almost simple: $T \preccurlyeq G \leqslant \operatorname{Aut}(T)$ for non-abelian simple T.

- Burness et al., 2010/11: T alternating or sporadic \checkmark
- G Lie type: Partial answers

Product type: $G \leqslant L\rangle P$ with its product action on Σ^{k}, where $L \leqslant \operatorname{Sym}(\Sigma)$. Bailey \& Cameron, 2011:

$$
b(L \text { l } P)=2 \Longleftrightarrow L_{\sigma} \text { has at least } D(P) \text { regular orbits on } \Sigma .
$$

Burness \& H, 2022+: Progress where $G<L$ l P

Diagonal type

Diagonal type: $T^{k} \preccurlyeq G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$.

Diagonal type

Diagonal type: $T^{k} \preccurlyeq G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$. Write $\Omega=T^{k} / D$, where $D=\{(t, \ldots, t): t \in T\}$ and set $\alpha=D$, so

$$
G_{\alpha}=G \cap\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\}
$$

Diagonal type

Diagonal type: $T^{k} \preccurlyeq G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$. Write $\Omega=T^{k} / D$, where $D=\{(t, \ldots, t): t \in T\}$ and set $\alpha=D$, so

$$
G_{\alpha}=G \cap\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\}
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.

Diagonal type

Diagonal type: $T^{k} \boxtimes G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$. Write $\Omega=T^{k} / D$, where $D=\{(t, \ldots, t): t \in T\}$ and set $\alpha=D$, so

$$
G_{\alpha}=G \cap\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\}
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, t_{i}=x \text { if } i \in \Delta_{2}, t_{i}=y \text { if } i \in \Delta_{3}
$$

Diagonal type

Diagonal type: $T^{k} \boxtimes G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$. Write $\Omega=T^{k} / D$, where $D=\{(t, \ldots, t): t \in T\}$ and set $\alpha=D$, so

$$
G_{\alpha}=G \cap\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\}
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, t_{i}=x \text { if } i \in \Delta_{2}, t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$.

Diagonal type

Diagonal type: $T^{k} \boxtimes G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$.
Write $\Omega=T^{k} / D$, where $D=\{(t, \ldots, t): t \in T\}$ and set $\alpha=D$, so

$$
G_{\alpha}=G \cap\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\}
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, t_{i}=x \text { if } i \in \Delta_{2}, t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi=1$ since π preserves $[k]=$ $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$.

Diagonal type

Diagonal type: $T^{k} \boxtimes G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$. Write $\Omega=T^{k} / D$, where $D=\{(t, \ldots, t): t \in T\}$ and set $\alpha=D$, so

$$
G_{\alpha}=G \cap\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\}
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, t_{i}=x \text { if } i \in \Delta_{2}, t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi=1$ since π preserves $[k]=$ $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$. Thus, $a \in C_{\operatorname{Aut}(T)}(x) \cap C_{\operatorname{Aut}(T)}(y)=1$ and so $g=1$.

Diagonal type

Diagonal type: $T^{k} \boxtimes G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$. Write $\Omega=T^{k} / D$, where $D=\{(t, \ldots, t): t \in T\}$ and set $\alpha=D$, so

$$
G_{\alpha}=G \cap\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\}
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, t_{i}=x \text { if } i \in \Delta_{2}, t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi=1$ since π preserves $[k]=$ $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$. Thus, $a \in C_{\text {Aut }(T)}(x) \cap C_{\text {Aut }(T)}(y)=1$ and so $g=1$.
Fawcett, 2013: $P \neq A_{k}, S_{k} \Longrightarrow b(G)=2$.

Diagonal type

Diagonal type: $T^{k} \boxtimes G \leqslant T^{k}$. $(\operatorname{Out}(T) \times P), P$ is primitive or $P=A_{2}$. Write $\Omega=T^{k} / D$, where $D=\{(t, \ldots, t): t \in T\}$ and set $\alpha=D$, so

$$
G_{\alpha}=G \cap\{(a, \ldots, a) \pi: a \in \operatorname{Aut}(T), \pi \in P\}
$$

Note. If $k>32$ and $P \neq A_{k}, S_{k}$ then $D(P)=2$, so there exists a distinguishing partition $[k]=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$ of distinct sizes.
Write $T=\langle x, y\rangle$ and $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega$, where

$$
t_{i}=1 \text { if } i \in \Delta_{1}, t_{i}=x \text { if } i \in \Delta_{2}, t_{i}=y \text { if } i \in \Delta_{3}
$$

Suppose $g=(a, \ldots, a) \pi \in G_{\alpha} \cap G_{\beta}$. Then $\pi=1$ since π preserves $[k]=$ $\Delta_{1} \cup \Delta_{2} \cup \Delta_{3}$. Thus, $a \in C_{\text {Aut }(T)}(x) \cap C_{\text {Aut }(T)}(y)=1$ and so $g=1$.
Fawcett, 2013: $P \neq A_{k}, S_{k} \Longrightarrow b(G)=2$.
$\mathbf{H}, 2022+$: If $P=A_{k}$, then $b(G)=2 \Longleftrightarrow 2<k<|T|$.

Part IV

The Saxl graph of a base-two group

Saxl graphs

Assume $G \leqslant \operatorname{Sym}(\Omega)$ is transitive of degree n and $b(G)=2$.
Burness \& Giudici, 2020: Saxl graph $\Sigma(G)$:
vertices Ω, with $\alpha \sim \beta \Longleftrightarrow\{\alpha, \beta\}$ is a base.

Saxl graphs

Assume $G \leqslant \operatorname{Sym}(\Omega)$ is transitive of degree n and $b(G)=2$.
Burness \& Giudici, 2020: Saxl graph $\Sigma(G)$:
vertices Ω, with $\alpha \sim \beta \Longleftrightarrow\{\alpha, \beta\}$ is a base.

Example

- G is Frobenius $\Longleftrightarrow \Sigma(G) \cong \mathbf{K}_{n}$.

Saxl graphs

Assume $G \leqslant \operatorname{Sym}(\Omega)$ is transitive of degree n and $b(G)=2$.
Burness \& Giudici, 2020: Saxl graph $\Sigma(G)$:

$$
\text { vertices } \Omega \text {, with } \alpha \sim \beta \Longleftrightarrow\{\alpha, \beta\} \text { is a base. }
$$

Example

- G is Frobenius $\Longleftrightarrow \Sigma(G) \cong \mathbf{K}_{n}$. e.g. $G=D_{2 p}$ and $n=p$ prime.

Saxl graphs

Assume $G \leqslant \operatorname{Sym}(\Omega)$ is transitive of degree n and $b(G)=2$.
Burness \& Giudici, 2020: Saxl graph $\Sigma(G)$:

$$
\text { vertices } \Omega \text {, with } \alpha \sim \beta \Longleftrightarrow\{\alpha, \beta\} \text { is a base. }
$$

Example

- G is Frobenius $\Longleftrightarrow \Sigma(G) \cong \mathbf{K}_{n}$.
e.g. $G=D_{2 p}$ and $n=p$ prime.
- $G=\mathbb{Z}_{m} \imath \mathbb{Z}_{2}$ and $n=2 m \Longrightarrow \Sigma(G) \cong \mathbf{K}_{m, m}$.

Saxl graphs

Assume $G \leqslant \operatorname{Sym}(\Omega)$ is transitive of degree n and $b(G)=2$.
Burness \& Giudici, 2020: Saxl graph $\Sigma(G)$:

$$
\text { vertices } \Omega \text {, with } \alpha \sim \beta \Longleftrightarrow\{\alpha, \beta\} \text { is a base. }
$$

Example

- G is Frobenius $\Longleftrightarrow \Sigma(G) \cong \mathbf{K}_{n}$.
e.g. $G=D_{2 p}$ and $n=p$ prime.
- $G=\mathbb{Z}_{m} \imath \mathbb{Z}_{2}$ and $n=2 m \Longrightarrow \Sigma(G) \cong \mathbf{K}_{m, m}$.
- $G=\mathrm{GL}_{2}(q)$ and $\Omega=\mathbb{F}_{q}^{2} \backslash\{0\}$.

Saxl graphs

Assume $G \leqslant \operatorname{Sym}(\Omega)$ is transitive of degree n and $b(G)=2$.
Burness \& Giudici, 2020: Saxl graph $\Sigma(G)$:

$$
\text { vertices } \Omega \text {, with } \alpha \sim \beta \Longleftrightarrow\{\alpha, \beta\} \text { is a base. }
$$

Example

- G is Frobenius $\Longleftrightarrow \Sigma(G) \cong \mathbf{K}_{n}$.
e.g. $G=D_{2 p}$ and $n=p$ prime.
- $G=\mathbb{Z}_{m} \imath \mathbb{Z}_{2}$ and $n=2 m \Longrightarrow \Sigma(G) \cong \mathbf{K}_{m, m}$.
- $G=\mathrm{GL}_{2}(q)$ and $\Omega=\mathbb{F}_{q}^{2} \backslash\{0\}$.

Note. $\{\alpha, \beta\}$ is a base $\Longleftrightarrow\{\alpha, \beta\}$ is a basis for \mathbb{F}_{q}^{2}.

Saxl graphs

Assume $G \leqslant \operatorname{Sym}(\Omega)$ is transitive of degree n and $b(G)=2$.
Burness \& Giudici, 2020: Saxl graph $\Sigma(G)$:

$$
\text { vertices } \Omega \text {, with } \alpha \sim \beta \Longleftrightarrow\{\alpha, \beta\} \text { is a base. }
$$

Example

- G is Frobenius $\Longleftrightarrow \Sigma(G) \cong \mathbf{K}_{n}$.
e.g. $G=D_{2 p}$ and $n=p$ prime.
- $G=\mathbb{Z}_{m} \imath \mathbb{Z}_{2}$ and $n=2 m \Longrightarrow \Sigma(G) \cong \mathbf{K}_{m, m}$.
- $G=\mathrm{GL}_{2}(q)$ and $\Omega=\mathbb{F}_{q}^{2} \backslash\{0\}$.

Note. $\{\alpha, \beta\}$ is a base $\Longleftrightarrow\{\alpha, \beta\}$ is a basis for \mathbb{F}_{q}^{2}.
Hence, $\Sigma(G) \cong \mathbf{K}_{q^{2}-1}-(q+1) \mathbf{K}_{q-1}$ is complete multipartite.

Further example

- $G=\mathrm{PGL}_{2}(q)$ and $\Omega=\left\{2\right.$-subsets of $\left\{1\right.$-spaces in $\left.\left.\mathbb{F}_{q}^{2}\right\}\right\}$.

Further example

- $G=\mathrm{PGL}_{2}(q)$ and $\Omega=\left\{2\right.$-subsets of $\left\{1\right.$-spaces in $\left.\left.\mathbb{F}_{q}^{2}\right\}\right\}$.

Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\Longleftrightarrow|\alpha \cap \beta|=1$.

Further example

- $G=\mathrm{PGL}_{2}(q)$ and $\Omega=\left\{2\right.$-subsets of $\left\{1\right.$-spaces in $\left.\left.\mathbb{F}_{q}^{2}\right\}\right\}$.

Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\Longleftrightarrow|\alpha \cap \beta|=1$. Hence, $\Sigma(G) \cong J(q+1,2)$ is a Johnson graph.

Further example

- $G=\mathrm{PGL}_{2}(q)$ and $\Omega=\left\{2\right.$-subsets of $\left\{1\right.$-spaces in $\left.\left.\mathbb{F}_{q}^{2}\right\}\right\}$.

Note. $G_{\alpha} \cong D_{2(q-1)}$ and $\{\alpha, \beta\}$ is a base $\Longleftrightarrow|\alpha \cap \beta|=1$.
Hence, $\Sigma(G) \cong J(q+1,2)$ is a Johnson graph.
For example, when $q=4$ we have the complement of the Petersen.

Valency

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Valency

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.
Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.

Valency

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.
- $|\Sigma(\alpha)|=r(G)\left|G_{\alpha}\right|$, where $r(G)$ is the number of regular G_{α}-orbits.

Valency

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.
- $|\Sigma(\alpha)|=r(G)\left|G_{\alpha}\right|$, where $r(G)$ is the number of regular G_{α}-orbits.

Burness \& Giudici, 2020: $|\Sigma(\alpha)|=p$ is a prime iff the following holds:

- $G=\mathbb{Z}_{p} \backslash \mathbb{Z}_{2}, n=2 p$ and $\Sigma(G) \cong \mathbf{K}_{p, p}$;
- $G=S_{3}, n=p+1=3$ and $\Sigma(G) \cong \mathbf{K}_{3}$;
- $G=\operatorname{AGL}_{1}\left(2^{f}\right), n=p+1=2^{f}$ and $\Sigma(G) \cong \mathbf{K}_{p+1}$.

Valency

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.
- $|\Sigma(\alpha)|=r(G)\left|G_{\alpha}\right|$, where $r(G)$ is the number of regular G_{α}-orbits.

Burness \& Giudici, 2020: $|\Sigma(\alpha)|=p$ is a prime iff the following holds:

- $G=\mathbb{Z}_{p} \backslash \mathbb{Z}_{2}, n=2 p$ and $\Sigma(G) \cong \mathbf{K}_{p, p}$;
- $G=S_{3}, n=p+1=3$ and $\Sigma(G) \cong \mathbf{K}_{3}$;
- $G=\operatorname{AGL}_{1}\left(2^{f}\right), n=p+1=2^{f}$ and $\Sigma(G) \cong \mathbf{K}_{p+1}$.

In particular, the Petersen graph is not a Saxl graph.

Valency

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.
- $|\Sigma(\alpha)|=r(G)\left|G_{\alpha}\right|$, where $r(G)$ is the number of regular G_{α}-orbits.

Burness \& Giudici, 2020: $|\Sigma(\alpha)|=p$ is a prime iff the following holds:

- $G=\mathbb{Z}_{p} \imath \mathbb{Z}_{2}, n=2 p$ and $\Sigma(G) \cong \mathbf{K}_{p, p}$;
- $G=S_{3}, n=p+1=3$ and $\Sigma(G) \cong \mathbf{K}_{3}$;
- $G=\operatorname{AGL}_{1}\left(2^{f}\right), n=p+1=2^{f}$ and $\Sigma(G) \cong \mathbf{K}_{p+1}$.

In particular, the Petersen graph is not a Saxl graph.
Chen \& H, 2022: G almost simple primitive and $|\Sigma(\alpha)|$ prime-power \checkmark

Valency

Let $\Sigma(\alpha)$ be the set of neighbours of α in $\Sigma(G)$.

Notes.

- $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.
- $|\Sigma(\alpha)|=r(G)\left|G_{\alpha}\right|$, where $r(G)$ is the number of regular G_{α}-orbits.

Burness \& Giudici, 2020: $|\Sigma(\alpha)|=p$ is a prime iff the following holds:

- $G=\mathbb{Z}_{p} \imath \mathbb{Z}_{2}, n=2 p$ and $\Sigma(G) \cong \mathbf{K}_{p, p}$;
- $G=S_{3}, n=p+1=3$ and $\Sigma(G) \cong \mathbf{K}_{3}$;
- $G=\operatorname{AGL}_{1}\left(2^{f}\right), n=p+1=2^{f}$ and $\Sigma(G) \cong \mathbf{K}_{p+1}$.

In particular, the Petersen graph is not a Saxl graph.
Chen \& H, 2022: G almost simple primitive and $|\Sigma(\alpha)|$ prime-power \checkmark e.g. $q=2^{f}+1, G=\mathrm{PGL}_{2}(q), G_{\alpha}=D_{2(q-1)}$ and $|\Sigma(\alpha)|=2^{f+1}$.

Orbital graphs

Note. $\Sigma(G)$ is the union of the $r(G)$ regular orbital graphs of G.

Orbital graphs

Note. $\Sigma(G)$ is the union of the $r(G)$ regular orbital graphs of G. Thus, $\Sigma(G)$ is a G-orbital graph $\Longleftrightarrow r(G)=1$.

Orbital graphs

Note. $\Sigma(G)$ is the union of the $r(G)$ regular orbital graphs of G. Thus, $\Sigma(G)$ is a G-orbital graph $\Longleftrightarrow r(G)=1$.

Problem. Classify the finite primitive groups G with $r(G)=1$.

Orbital graphs

Note. $\Sigma(G)$ is the union of the $r(G)$ regular orbital graphs of G. Thus, $\Sigma(G)$ is a G-orbital graph $\Longleftrightarrow r(G)=1$.

Problem. Classify the finite primitive groups G with $r(G)=1$.

Burness \& H, 2021+: G almost simple and G_{α} soluble \checkmark

Orbital graphs

Note. $\Sigma(G)$ is the union of the $r(G)$ regular orbital graphs of G. Thus, $\Sigma(G)$ is a G-orbital graph $\Longleftrightarrow r(G)=1$.

Problem. Classify the finite primitive groups G with $r(G)=1$.

Burness \& H, 2021+: G almost simple and G_{α} soluble \checkmark
e.g. $G=\mathrm{PGL}_{2}(q)$ and $G_{\alpha}=D_{2(q-1)}$.

Connectedness

Note. G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Connectedness

Note. G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Connectedness

Note. G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness \& Giudici, 2020)
G primitive and $\alpha, \beta \in \Omega \Longrightarrow \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Connectedness

Note. G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness \& Giudici, 2020)
G primitive and $\alpha, \beta \in \Omega \Longrightarrow \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$
Q(G)=1-\frac{r(G)\left|G_{\alpha}\right|}{|\Omega|}=1-\frac{|\Sigma(\alpha)|}{|\Omega|}
$$

is the probability that a random pair in Ω is not a base for G.

Connectedness

Note. G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness \& Giudici, 2020)
G primitive and $\alpha, \beta \in \Omega \Longrightarrow \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$
Q(G)=1-\frac{r(G)\left|G_{\alpha}\right|}{|\Omega|}=1-\frac{|\Sigma(\alpha)|}{|\Omega|}
$$

is the probability that a random pair in Ω is not a base for G.
Recall. $Q(G)<1 \Longleftrightarrow b(G) \leqslant 2$.

Connectedness

Note. G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness \& Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \Longrightarrow \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$
Q(G)=1-\frac{r(G)\left|G_{\alpha}\right|}{|\Omega|}=1-\frac{|\Sigma(\alpha)|}{|\Omega|}
$$

is the probability that a random pair in Ω is not a base for G.
Recall. $Q(G)<1 \Longleftrightarrow b(G) \leqslant 2$.
Note. $Q(G)<1 / 2 \Longleftrightarrow|\Sigma(\alpha)|>\frac{1}{2}|\Omega|$

Connectedness

Note. G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness \& Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \Longrightarrow \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$
Q(G)=1-\frac{r(G)\left|G_{\alpha}\right|}{|\Omega|}=1-\frac{|\Sigma(\alpha)|}{|\Omega|}
$$

is the probability that a random pair in Ω is not a base for G.
Recall. $Q(G)<1 \Longleftrightarrow b(G) \leqslant 2$.
Note. $Q(G)<1 / 2 \Longleftrightarrow|\Sigma(\alpha)|>\frac{1}{2}|\Omega| \Longrightarrow \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Connectedness

Note. G is primitive $\Longrightarrow \Sigma(G)$ is connected.

Question: What is the diameter of $\Sigma(G)$ if G is primitive?

Conjecture (Burness \& Giudici, 2020)

G primitive and $\alpha, \beta \in \Omega \Longrightarrow \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.

Recall that

$$
Q(G)=1-\frac{r(G)\left|G_{\alpha}\right|}{|\Omega|}=1-\frac{|\Sigma(\alpha)|}{|\Omega|}
$$

is the probability that a random pair in Ω is not a base for G.
Recall. $Q(G)<1 \Longleftrightarrow b(G) \leqslant 2$.
Note. $Q(G)<1 / 2 \Longleftrightarrow|\Sigma(\alpha)|>\frac{1}{2}|\Omega| \Longrightarrow \Sigma(\alpha) \cap \Sigma(\beta) \neq \emptyset$.
e.g. $p \geqslant 11$ prime, $(G, H)=\left(S_{p}, \mathrm{AGL}_{1}(p)\right) \Longrightarrow Q(G)_{b}<1 / 2$.

Burness-Giudici conjecture

Example

If $G=\mathrm{PGL}_{2}(q)$ and $G_{\alpha}=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Burness-Giudici conjecture

Example

If $G=\mathrm{PGL}_{2}(q)$ and $G_{\alpha}=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

- Chen \& Du 2020+; Burness \& H, 2021+: $\operatorname{soc}(G)=L_{2}(q) \checkmark$

Burness-Giudici conjecture

Example

If $G=\mathrm{PGL}_{2}(q)$ and $G_{\alpha}=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

- Chen \& Du 2020+; Burness \& H, 2021+: $\operatorname{soc}(G)=L_{2}(q) \checkmark$
- Burness \& H, 2021+: G almost simple with G_{α} soluble \checkmark

Burness-Giudici conjecture

Example

If $G=\mathrm{PGL}_{2}(q)$ and $G_{\alpha}=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

- Chen \& Du 2020+; Burness \& H, 2021+: $\operatorname{soc}(G)=L_{2}(q) \checkmark$
- Burness \& H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.

Burness-Giudici conjecture

Example

If $G=\mathrm{PGL}_{2}(q)$ and $G_{\alpha}=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

- Chen \& Du 2020+; Burness \& H, 2021+: $\operatorname{soc}(G)=L_{2}(q) \checkmark$
- Burness \& H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.
BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β}-orbits.

Burness-Giudici conjecture

Example

If $G=\mathrm{PGL}_{2}(q)$ and $G_{\alpha}=D_{2(q-1)}$, then $\Sigma(G)=J(q+1,2)$ has the common neighbour property, though $Q(G) \rightarrow 1$ as $q \rightarrow \infty$.

Some other evidence:

- Chen \& Du 2020+; Burness \& H, 2021+: $\operatorname{soc}(G)=L_{2}(q) \checkmark$
- Burness \& H, 2021+: G almost simple with G_{α} soluble \checkmark

Recall. $\Sigma(\alpha)$ is the union of regular G_{α}-orbits.
BG conjecture: $\Sigma(\alpha)$ meets the union of regular G_{β}-orbits.

Conjecture (Burness \& H, 2022+)

G primitive and $\alpha, \beta \in \Omega \Longrightarrow \Sigma(\alpha)$ meets every regular G_{β}-orbit.

Future work

- Other invariants of the Saxl graph

Future work

- Other invariants of the Saxl graph

Burness \& H, 2021+: Results on clique and independence numbers

Future work

- Other invariants of the Saxl graph

Burness \& H, 2021+: Results on clique and independence numbers

- Generalisations of Saxl graphs

Future work

- Other invariants of the Saxl graph

Burness \& H, 2021+: Results on clique and independence numbers

- Generalisations of Saxl graphs
- Bases for affine groups

Future work

- Other invariants of the Saxl graph

Burness \& H, 2021+: Results on clique and independence numbers

- Generalisations of Saxl graphs
- Bases for affine groups

Seress 1996: $b(G) \leqslant 4$ if G is primitive and soluble

Future work

- Other invariants of the Saxl graph

Burness \& H, 2021+: Results on clique and independence numbers

- Generalisations of Saxl graphs
- Bases for affine groups

Seress 1996: $b(G) \leqslant 4$ if G is primitive and soluble

- Distinguishing numbers for transitive groups

Future work

- Other invariants of the Saxl graph

Burness \& H, 2021+: Results on clique and independence numbers

- Generalisations of Saxl graphs
- Bases for affine groups

Seress 1996: $b(G) \leqslant 4$ if G is primitive and soluble

- Distinguishing numbers for transitive groups

Seress 1996: $D(G) \leqslant 5$ if G is soluble

Thank you!

