Regular subgroups of primitive groups

Hongyi Huang

Groups, Graphs and Combinatorics (on the occasion of Professor Cai Heng Li's 65th birthday)

Yunnan University, Kunming

12 January 2025

Problem. Classify the transitive subgroups of primitive groups.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types.

- Affine (HA)
- Almost simple (AS)
- Diagonal type (HS & SD)
- Product type (HC, CD & PA)
- Twisted wreath products (TW)

Problem. Classify the transitive subgroups of primitive groups.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types.

- Affine (HA)
- Almost simple $(AS) \checkmark$ (Li et al.)
- Diagonal type (HS & SD)
- Product type (HC, CD & PA)
- Twisted wreath products (TW)

Problem. Classify the transitive subgroups of primitive groups.

The **O'Nan-Scott theorem** divides finite primitive groups into 5 types.

- Affine (HA)
- Almost simple $(AS) \vee (Li et al.)$
- Diagonal type (HS & SD)
- Product type (HC, CD & PA)
- Twisted wreath products (TW)

Problem. Regular or soluble transitive subgroups of diagonal type groups?

Let T be a finite simple group and let

$$
G = Hol(T) = T: Aut(T) = T2. Out(T)
$$

be the **holomorph** of T .

Let T be a finite simple group and let

$$
G = Hol(T) = T: Aut(T) = T2. Out(T)
$$

be the **holomorph** of T .

Key observation. If K is a transitive subgroup of G , then there exist $A, B \leq A$ ut(T) isomorphic to some quotient groups of K such that

$$
\mathcal{T} \triangleleft AB = AT = BT \leq \mathsf{Aut}(\mathcal{T}).
$$

Let T be a finite simple group and let

$$
G = Hol(T) = T: Aut(T) = T2. Out(T)
$$

be the **holomorph** of T .

Key observation. If K is a transitive subgroup of G, then there exist $A, B \leq A$ ut(*T*) isomorphic to some quotient groups of *K* such that

$$
\mathcal{T} \triangleleft AB = AT = BT \leq \mathsf{Aut}(\mathcal{T}).
$$

Example

$$
\mathcal{T} = A_{q+1}, \ K \cong (A_{q-2} \times \text{PSL}_2(q)).2 \text{ associated to } S_{q+1} = S_{q-2} \text{PGL}_2(q).
$$

Let T be a finite simple group and let

$$
G = Hol(T) = T: Aut(T) = T2. Out(T)
$$

be the **holomorph** of T .

Key observation. If K is a transitive subgroup of G , then there exist $A, B \leq A$ ut(T) isomorphic to some quotient groups of K such that

$$
\mathcal{T} \triangleleft AB = AT = BT \leq \mathsf{Aut}(\mathcal{T}).
$$

Example

$$
\mathcal{T} = A_{q+1}, \ K \cong (A_{q-2} \times \text{PSL}_2(q)).2 \text{ associated to } S_{q+1} = S_{q-2} \text{PGL}_2(q).
$$

Conversely, if $T = AB$, then there exists a transitive subgroup of G isomorphic to $A \times B$.

Regular subgroups of holomorph simple groups

Now assume K is a regular subgroup of Hol(T) w.r.t. the factorisation

$$
T \triangleleft AB = AT = BT \leq Aut(T).
$$

Note. A composition factor of A (or B) is a composition factor of K .

Regular subgroups of holomorph simple groups

Now assume K is a regular subgroup of Hol(T) w.r.t. the factorisation

$$
T \triangleleft AB = AT = BT \leq Aut(T).
$$

Note. A composition factor of A (or B) is a composition factor of K.

Example

$$
T = G_2(q) = AB
$$
 with $q = 3^f$, $A = SL_3(q)$ and $B = SU_3(q)$.2. But

$$
q^{16} \sim |SL_3(q)| \cdot |SU_3(q)| > |K| = |T| \sim q^{14},
$$

so there is no regular subgroup K w.r.t. the factorisation $T = AB$.

Main results on holomorph simple groups

Theorem (H $&$ Wang, 2025+)

For every finite simple group T, the regular subgroups of Hol(T) are determined, up to conjugacy.

Theorem $(H & Wang, 2025+)$

For every finite simple group T , the **soluble transitive** subgroups of $Hol(T)$ are determined, up to conjugacy.

Application I: Hopf-Galois structure

For a finite group G, TFAE:

- K is isomorphic to a regular subgroup of Hol(G);
- \bullet There exists a **Hopf-Galois structure** of type K on any Galois G-extension.

Application I: Hopf-Galois structure

For a finite group G, TFAE:

- K is isomorphic to a regular subgroup of Hol(G);
- There exists a **Hopf-Galois structure** of type K on any Galois G-extension.

Theorem (H $\&$ Wang, 2025+)

The types of Hopf-Galois structures are determined on any Galois extension whose Galois group is finite simple.

Skew brace: A triple $(X, +, \circ)$, where $(X, +)$ and (X, \circ) are groups, and

$$
x\circ (y+z)=x\circ y-x+x\circ z \text{ for all } x,y,z\in X.
$$

Skew brace: A triple $(X, +, \circ)$, where $(X, +)$ and (X, \circ) are groups, and

$$
x\circ (y+z)=x\circ y-x+x\circ z \text{ for all } x,y,z\in X.
$$

Connections: The Yang-Baxter equation; Garside theory; pre-Lie algebras; Rota-Baxter operators...

Skew brace: A triple $(X, +, \circ)$, where $(X, +)$ and (X, \circ) are groups, and

$$
x\circ (y+z)=x\circ y-x+x\circ z \text{ for all } x,y,z\in X.
$$

Connections: The Yang-Baxter equation; Garside theory; pre-Lie algebras; Rota-Baxter operators...

```
For a finite group G, TFAE:
```
- \bullet K is isomorphic to a regular subgroup of Hol(G);
- $G \cong (X, +)$ and $K \cong (X, \circ)$ for some skew brace $(X, +, \circ)$.

Skew brace: A triple $(X, +, \circ)$, where $(X, +)$ and (X, \circ) are groups, and

$$
x\circ (y+z)=x\circ y-x+x\circ z \text{ for all } x,y,z\in X.
$$

Connections: The Yang-Baxter equation; Garside theory; pre-Lie algebras; Rota-Baxter operators...

```
For a finite group G, TFAE:
```
• K is isomorphic to a regular subgroup of $Hol(G)$;

 $G \cong (X, +)$ and $K \cong (X, \circ)$ for some skew brace $(X, +, \circ)$.

Theorem (H $&$ Wang, 2025+)

The skew braces with finite simple additive groups are classified.

Let $k \ge 2$, T be a non-abelian simple group, and let

$$
X:=\{(t,\ldots,t):t\in T\}\leqslant T^k.
$$

Then $\mathcal{T}^k\leqslant \operatorname{\mathsf{Sym}}(\Omega)$ with $\Omega=[\mathcal{T}^k:X]$ of size $|\mathcal{T}|^{k-1}.$

Let $k \ge 2$, T be a non-abelian simple group, and let

$$
X:=\{(t,\ldots,t):t\in T\}\leqslant T^k.
$$

Then $\mathcal{T}^k\leqslant \operatorname{\mathsf{Sym}}(\Omega)$ with $\Omega=[\mathcal{T}^k:X]$ of size $|\mathcal{T}|^{k-1}.$ A group $G \leqslant Sym(\Omega)$ is of **diagonal type** if

$$
\mathcal{T}^k \leqslant G \leqslant N_{\text{Sym}(\Omega)}(\mathcal{T}^k) \cong \mathcal{T}^k.(\text{Out}(\mathcal{T}) \times S_k).
$$

Let $k \ge 2$, T be a non-abelian simple group, and let

$$
X:=\{(t,\ldots,t):t\in T\}\leqslant T^k.
$$

Then $\mathcal{T}^k\leqslant \operatorname{\mathsf{Sym}}(\Omega)$ with $\Omega=[\mathcal{T}^k:X]$ of size $|\mathcal{T}|^{k-1}.$ A group $G \leqslant Sym(\Omega)$ is of **diagonal type** if

$$
\mathcal{T}^k \triangleleft G \leqslant N_{\text{Sym}(\Omega)}(\mathcal{T}^k) \cong \mathcal{T}^k.(\text{Out}(\mathcal{T}) \times S_k).
$$

Example. Hol $(T) = T^2$. Out (T) .

Let $k \ge 2$, T be a non-abelian simple group, and let

$$
X:=\{(t,\ldots,t):t\in\mathcal{T}\}\leqslant \mathcal{T}^k.
$$

Then $\mathcal{T}^k\leqslant \operatorname{\mathsf{Sym}}(\Omega)$ with $\Omega=[\mathcal{T}^k:X]$ of size $|\mathcal{T}|^{k-1}.$ A group $G \leqslant Sym(\Omega)$ is of **diagonal type** if

$$
\mathcal{T}^k \triangleleft G \leqslant N_{\text{Sym}(\Omega)}(\mathcal{T}^k) \cong \mathcal{T}^k.(\text{Out}(\mathcal{T}) \times S_k).
$$

Example. Hol $(T) = T^2$. Out (T) .

Suppose $K \leq G$ is transitive and assume K **does not contain** any simple direct factor of \mathcal{T}^k .

Let $k \ge 2$, T be a non-abelian simple group, and let

$$
X:=\{(t,\ldots,t):t\in\mathcal{T}\}\leqslant \mathcal{T}^k.
$$

Then $\mathcal{T}^k\leqslant \operatorname{\mathsf{Sym}}(\Omega)$ with $\Omega=[\mathcal{T}^k:X]$ of size $|\mathcal{T}|^{k-1}.$ A group $G \leqslant Sym(\Omega)$ is of **diagonal type** if

$$
\mathcal{T}^k \triangleleft G \leqslant N_{\text{Sym}(\Omega)}(\mathcal{T}^k) \cong \mathcal{T}^k.(\text{Out}(\mathcal{T}) \times S_k).
$$

Example. Hol $(T) = T^2$. Out (T) .

Suppose $K \leq G$ is transitive and assume K **does not contain** any simple direct factor of \mathcal{T}^k .

Liebeck, Praeger & Saxl, 2000: $k \leqslant 3$ and $K \leqslant T^k$. Out (T) .

Let $k \ge 2$, T be a non-abelian simple group, and let

$$
X:=\{(t,\ldots,t):t\in T\}\leqslant T^k.
$$

Then $\mathcal{T}^k\leqslant \operatorname{\mathsf{Sym}}(\Omega)$ with $\Omega=[\mathcal{T}^k:X]$ of size $|\mathcal{T}|^{k-1}.$ A group $G \leqslant Sym(\Omega)$ is of **diagonal type** if

$$
\mathcal{T}^k \triangleleft G \leqslant N_{\text{Sym}(\Omega)}(\mathcal{T}^k) \cong \mathcal{T}^k.(\text{Out}(\mathcal{T}) \times S_k).
$$

Example. Hol $(T) = T^2$. Out (T) .

Suppose $K \leq G$ is transitive and assume K **does not contain** any simple direct factor of \mathcal{T}^k .

Liebeck, Praeger & Saxl, 2000: $k \leqslant 3$ and $K \leqslant T^k$. Out (T) .

Theorem (H $&$ Wang, 2025+)

If K is regular or soluble, then $k = 2$ and $K \leq Hol(T)$ is determined.

Assume $K \le G$ is regular and assume K contains exactly $\ell \ge 1$ simple direct factors of \mathcal{T}^k .

Assume $K \le G$ is regular and assume K contains exactly $\ell \ge 1$ simple direct factors of \mathcal{T}^k .

Note. If $\ell = k - 1$ then $K \cong T^{k-1}$. So we assume $\ell \leq k - 2$.

Assume $K \le G$ is regular and assume K contains exactly $\ell \ge 1$ simple direct factors of \mathcal{T}^k .

Note. If $\ell = k - 1$ then $K \cong T^{k-1}$. So we assume $\ell \leq k - 2$.

Morris & Spiga, 2021: $\ell = k - 3$ or $k - 2$, and $K \leq T^k$. Out(T).

Assume $K \leq G$ is regular and assume K contains exactly $\ell \geq 1$ simple direct factors of \mathcal{T}^k .

Note. If $\ell = k - 1$ then $K \cong T^{k-1}$. So we assume $\ell \leq k - 2$.

Morris & Spiga, 2021: $\ell = k - 3$ or $k - 2$, and $K \leq T^k$. Out(T).

Theorem (H $&$ Wang, 2025+)

 $\ell = k - 2$, and K is determined.

Assume $K \leq G$ is regular and assume K contains exactly $\ell \geq 1$ simple direct factors of \mathcal{T}^k .

Note. If $\ell = k - 1$ then $K \cong T^{k-1}$. So we assume $\ell \leq k - 2$.

Morris & Spiga, 2021: $\ell = k - 3$ or $k - 2$, and $K \leq T^k$. Out(T).

Theorem (H $&$ Wang, 2025+)

 $\ell = k - 2$, and K is determined.

Theorem $(H & Wang, 2025+)$

The regular or soluble transitive subgroups of diagonal type groups are determined, up to conjugacy.

Let $G = \mathcal{T}^k \mathpunct{:} P$ be a primitive twisted wreath product, where $P \leqslant \mathcal{S}_k$.

Let $G = \mathcal{T}^k \mathpunct{:} P$ be a primitive twisted wreath product, where $P \leqslant \mathcal{S}_k$.

Let K be a regular subgroup of G, and suppose K contains exactly ℓ simple direct factors of \mathcal{T}^k .

Let $G = \mathcal{T}^k \mathpunct{:} P$ be a primitive twisted wreath product, where $P \leqslant \mathcal{S}_k$.

Let K be a regular subgroup of G, and suppose K contains exactly ℓ simple direct factors of \mathcal{T}^k .

Morris & Spiga, 2021: $\ell \ge k - 3$.

Let $G = \mathcal{T}^k \mathpunct{:} P$ be a primitive twisted wreath product, where $P \leqslant \mathcal{S}_k$.

Let K be a regular subgroup of G, and suppose K contains exactly ℓ simple direct factors of \mathcal{T}^k .

Morris & Spiga, 2021: $\ell \ge k - 3$.

```
Theorem (H & Wang, 2025+)\ell \geq k - 2.
```
Let $G = \mathcal{T}^k \mathpunct{:} P$ be a primitive twisted wreath product, where $P \leqslant \mathcal{S}_k$.

Let K be a regular subgroup of G, and suppose K contains exactly ℓ simple direct factors of \mathcal{T}^k .

Morris & Spiga, 2021: $\ell \ge k - 3$.

```
Theorem (H & Wang, 2025+)\ell \geq k - 2.
```
Example

Let $G=A_5^6$: A_6 , $H=A_5^6$: $A_5=(A_5^5$: $A_5)\times A_5$ and $L\cong A_5$ be the diagonal of the latter two A_5 's. Then $K=A_5^5$: L is a regular subgroup with $\ell=5$.

Let $G = \mathcal{T}^k \mathpunct{:} P$ be a primitive twisted wreath product, where $P \leqslant \mathcal{S}_k$.

Let K be a regular subgroup of G, and suppose K contains exactly ℓ simple direct factors of \mathcal{T}^k .

Morris & Spiga, 2021: $\ell \ge k - 3$.

```
Theorem (H & Wang, 2025+)\ell \geq k - 2.
```
Example

Let $G=A_5^6$: A_6 , $H=A_5^6$: $A_5=(A_5^5$: $A_5)\times A_5$ and $L\cong A_5$ be the diagonal of the latter two A_5 's. Then $K=A_5^5$: L is a regular subgroup with $\ell=5$.

Spiga (personal communication): $\ell \ge k - 2$ is best possible.

Future directions

- Transitive subgroups of diagonal type groups
- Regular subgroups of other primitive groups

Remark. The only remaining families are the affine groups (hard!), the twisted wreath products and the product type groups.

• Soluble transitive groups of non-affine primitive groups Remark. The only remaining family is the product type groups.

....